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ABSTRACT

The paper describes a method of small-signal time response analysis based on the state – space equations of the switching converters. The method is based on using the Mathcad tool to evaluate the converter time response at the input line voltage variations and duty cycle variations. Then a graphical comparison is made between the time variation response of the state vector (the output voltage and the inductor current of the converter) using Orcad tool and the same plots using Mathcad. The differences between plots are smaller meaning that the “state – space averaged model” method introduces small errors. The methodology is illustrated on the three basic DC–DC converters: buck, boost, and buck-boost converters. We consider all converters to be operating in continuous conduction mode (CCM).

INTRODUCTION


Modeling the switching converters in general, imply the manipulations of differential equations by different order. The primary advantage of modeling is that is the unified description of all power stages regardless of the type (buck, boost buck – boost or any other variation) through utilization of the exact state - space equations of the two switched models.


The basic dc - dc level conversion function of switching converters is achieved by repetitive switching between two linear networks consisting of ideally loss-less storage elements, inductances and capacitances. In practice, this function may be obtained by use of transistors and diodes, which operate as synchronous switches. On the assumption that the circuit operates in the “continuous conduction mode” in which the instantaneous inductor current does not fall to zero at any point in the cycle, there are only two different “states” of the circuit. Each state, however, can be represented by a linear circuit model or by a corresponding set of state–space equations. Even through any set of linearly independent variables can be chosen as the state variables, it is customary and convenient in electrical networks to adopt the inductor currents and capacitor voltages. The total number of storage elements thus determines the order of the system.


1. BASIC STATE – SPACE AVERAGED MODEL


The metod is described in detail in [1], [3], together with a discussion of the necessary approximations and restrictions. For the interval dT  (the interval when the switch is in the “on” state) the state - space equations can be writen as:
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For interval (1-d)T  (the interval for which the switch is in the “off” state): 
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In the above relations, vIN is the converter line input voltage, A1 and A2 are two dimensions matrices, b1 and b2 are the control vectors and the y1 and y2 outputs vectors.

The first step introduces the basic averaging process, in which a single linear set of equations is formed from the sum of the equations for interval dT weighted by d, and the equations for the (1-d)T weighted by (1-d):
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in which the duty ratio d is considered constant D.


The next step is perturbation of the variables according to 
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, where capital letters represent dc steady state values and lower case letters with hat represent superimposed ac variations. Note that the duty ratio is considered an “input” variable in the same way, as the line voltage. Upon substitution into the averaged state space equation, these perturbations result in corresponding perturbations in the state vector 
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The following relations describe the “dc” model:
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The following relations describe the “ac” (small – signal) model:
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These equations represent the small signal low frequency model of any two state switching dc - dc converter working in the continuous conduction mode.


The perturbation equation has been liniarized by omission of terms in the products 
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. This step requires the imposition of the “small-signal” restriction 
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The state space for “two-state” converters of the type discussed so far in which two distinct circuits exist for two positions of the switch. For practical converters in which the switch is implemented by a transistor / diode combination, this applies to the so-called “continuous inductor current” mode in which the inductor current never falls to zero. In such practical converters, there is another mode of operation, the “discontinuous” mode, in which the inductor current falls to zero before the end of the cycle, causing both the transistor and diode to be open. This constitutes a three-state mode, and the state space averaging method can be applied (with somewhat greater difficulty) to this case also [2].


Using the Laplace transformer, the dynamic (ac) model can be written as:
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From the dynamic (ac) model, the line voltage to state – vector transfer functions can be easily derived if considering d(s) = 0 and duty cycle to state – vector transfer functions if vIN: = .0
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2. SIMULATION RESULTS AND DISCUSSIONS


The transfer functions (voltage to state – vector and duty cycle to state – vector) can be extracted from the equation (1.08) and are used to determine the time variation of the state vector (inductance current and capacitance voltage). In this section the state – space averaging method is demonstrated in detail for the case of the basic dc – dc converters power stage (buck, boost and buck – boost) in which parasitic effects (ESR of the capacitor and series resistance of the inductor) are included. The dc – dc converters are working in the “continuous inductor current mode”. The values for the components are RL = RC = 0.1 Ω, L = 1mH, C = 100μF VIN = 50V, R = 10 Ω, T = 10μs, D = 0.5.


For the three basic converters, the transfer functions voltage to state – vector can be written as:
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where the components is listed in the Table 2.1.

Table 2.1


Buck
Boost
Buck-Boost
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Using the inverse Laplace transformer, the time variation of the state vector can be written like:
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where the values for components are listed in the following table.

Table 2.2


Buck
Boost
Buck-Boost
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For the boost converter, with Mathcad tool will be plotted the 
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for the case in which the duty ratio is rising from value D to D + (d (where (d = 0.1) at t = 20ms and the input voltage is constant.
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From Fig. 2.1 it can be see that if the duty ratio is rising at t = t0 = 20ms , the state vector components reach the new stationary regime after a time noted with Δt.


What happens if the line voltage is rising from VIN to VIN + ΔvIN, where ΔvIN = 5V ?. It can be seen that the inductance current and capacitance voltage is rising to the next stationary value like in the Fig. 2.2 and Fig. 2.3.


In Fig. 2.3 there are the same the state vector components but the converter was simulated with the Orcad tool, where ideal switches were used, not a transistor / diode. The effects of series resistance of the inductor and ESR of the capacitor were included too.

For the boost converter, with Mathcad tool will be plotted the 
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for the case in which input voltage is rising at t = 20ms.
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For the buck converter, with Mathcad tool will be plotted the 
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()

L

it

 and 
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for the case in which the duty ratio is rising from value D to D + (d where (d = 0.1 at t = 20ms and the input voltage is constant.
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From Fig. 2.4 it can be seen that if the duty ratio is rising at t = t0 = 20ms , the state vector components reach the new stationary regime after a time noted with Δt.


What happen if the line voltage is rising from VIN to VIN + ΔvIN, where ΔvIN = 5V ?. It can be seen that the inductance current and capacitance voltage is rising to the next stationary value like in the Fig. 2.5 and Fig. 2.6.


In Fig. 2.6 there are the same the state vector components but the converter was simulated with Orcad tool, where ideal switches were used, not a transistor / diode. The effects of series resistance of the inductor and ESR of the capacitor were included too, for comparison.

For the buck converter, with Mathcad tool will be plotted the 
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 and 
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for the case in which input voltage is modified.
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For the buck-boost converter, with Mathcad tool will be plotted the 
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 and 
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for the case in which the duty ratio is rising from value D to D + (d where (d = 0.1 at t = 20ms and the input voltage is constant.
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From Fig. 2.7 it can be seen that if the duty ratio is rising at t = t0 = 20ms , the state vector components reach the new stationary regime after a time noted with Δt.


What happens if the line voltage is rising from VIN to VIN + ΔvIN, where ΔvIN = 5V ?. It can be seen that the inductance current and capacitance voltage is rising to the next stationary value like in the Fig. 2.8 and Fig. 2.9.


In Fig. 2.9 there are the same the state vector components but the converter was simulated with Orcad tool, where ideal switches were used, not a transistor / diode. The effects of series resistance of the inductor and ESR of the capacitor were included too, for comparison.

For the buck-boost converter, with Mathcad tool will be plotted the 
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 and 
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for the case in which input voltage is modified.
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3. CONCLUSION


The fundamental step in state space modeling is the replacement of the state – space descriptions of the two-switched networks by their average over the single switching period T, which results in a single continuous state – space equation description (1.03) designated the basic averaged state - space model.


Because manipulating differential equations is not easy, Laplace transformer was used to determine the solution of the equations in “s” plane, and then with the inverse Laplace transformer, it was possible to determine the time response variation of the state vector (the inductor current and capacitor voltage)


The Orcad program is often used in power converter simulations and from the figures 2.1. to 2.9 it can be see that the differences between the Mathcad plots and Orcad plots are small.


With the same equations a frequency analysis can be done using Bode plots.


All the simulations were made in “open loop” (there was no reaction between output and control) and it will be interesting to find the mathematical model for a converter who is working with reaction.
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O metodă diferită de studiu a modelării convertoarelor de putere


REZUMAT


Lucrarea descrie o metodă de analiza a răspunsului în timp, a convertoarelor de curent continuu, plecând de la ecaţiile de stare, folosind metoda modelului mediat. Pentru determinarea şi vizualizarea răspunsului convertoarelor la variaţia tensiunii de intrare şi/sau a factorului de comandă, s-a folosit programul Mathcad. După determinarea ecuaţiilor matematice s-au trasat graficele coresunzătoare tensiunii de ieşire şi a curentului prin inductor folosind programul Mathcad pe deoparte, iar pe de altă parte s-au trasat aceleaşi grafice, folosind programul Orcad, pentru comparaţie. In urma comparaţiei s-a observat că diferenţele sint mici. S-au studiat convertoarele de baza: buck, boost, şi buck-boost ce lucrează în modul de conducţie continuă a curentului prin inductor (CCM).
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Fig. 2.4. Inductance current iL(t) and capacitance voltage v(t) for the case in which the duty ratio is rising from value D to D + (d instantaneous at time t = t0 for the buck converter, using Mathcad tool.
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Fig. 2.3. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage is rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the boost converter, using Orcad tool.
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Fig. 2.2. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage is rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the boost converter, using Mathcad tool.
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Fig. 2.1. Inductance current iL(t) and capacitance voltage v(t) for the case in which the duty ratio is rising from value D to D + (d instantaneously at time t = t0 for the boost converter, using Mathcad tool.
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Fig. 2.7. Inductance current iL(t) and capacitance voltage v(t) for the case in which the duty ratio is rising from value D to D + (d instantaneously at time t = t0 for the buck-boost converter, using Mathcad tool.
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Fig. 2.5. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage is rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the buck converter, using Mathcad tool.





Fig. 2.6. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage in rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the buck converter, using Orcad tool.





Time [s]





 24,97 V





ΔvIN





VIN





27,47 V





Δt





 28,97 V





 v(t)





 2,46 A





 2,75 A





3,35 A





iL(t)





 20





40





50





  0





40ms





30ms





20ms





10ms





15,06 A





18,04 A





Time [s]





 v(t)





 47,63 V





 65,77 V





71,55 V





 0





  0





 9,52 A





Δt





40ms





30ms





20ms





10ms





 20





40





60





Fig. 2.9. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage it rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the buck-boost converter, using Orcad tool.
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Fig. 2.8. Inductance current iL(t) and capacitance voltage v(t) for the case in which the input voltage it rising from 0V to VIN instantaneously at time t = 0 and at time t = t0 it is rising again with ΔvIN  for the buck-boost converter, using Mathcad tool.
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Fig. 1. Switching intervals.
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