

BLDC Software Control

ПРОГРАМИРОВАННБІЙ КОНТРОПБ BLDC

Teaching Assi. Eng. Aghion C.1, Lect. Eng. Ursaru O.2 , Assoc. Prof. Dr. Eng.Vornicu L.3,
Faculty of Electronics and Telecommunications Technical University of Iasi -Romania

E-mail: aghion@etc.tuiasi.ro; E-mail: ovidiu@etc.tuiasi.ro

Abstract: In this paper, we suggest a PWM command for trapezoidal BLDC engine, using Hall sensors, in current closed loop, with PID
reaction. The software command is implemented on a C8051F120 microcontroller made by Silicon Laboratories, which produces a PWM
command at 24KHz carrier frequency.
KEYWORDS: MICROCONTROLLER, SOFTWARE, PID, COMMAND, POWER

1. Introduction

BLDC engines (Brushless DC) are used in high speed applications,
canning and bottling, machine tools, material handling, robotics,
compressors, fans, treadmills, etc, with some advantages (low cost,
precise speed control, moderate PWM losses) and disadvantages
(high torque ripple, medium performance, high radial forces on
motor). The application was successfully tested on the BLDC
engine, type BM10, equipped with Hall sensors, made by
PennEngineering Motion Technologies Company.

2. Results and discussion

Fig. 1 shows the simplified circuit used for this software.

The most important block for this application is the C8051F120
microcontroller, used to work at 96MHz, with the following inputs:

- 3 buttons (Start, Stop, Reverse Engine);
- 3 sense inputs (iA, iB, iC);
- 3 sensors Hall inputs (HA, HB, HC);

and outputs:
- 3 PWM commands (for the upper side of the three phase

power inverter);
- 3 normal command outputs (for lower side of the three

phase power inverter);

Fig. 2 presents the following waveforms:

- Hall sensors outputs (HA, HB, HC)
- output torque
- sense outputs currents

2.1 Software description

First of all we must initialize the microcontroller:
Oscillator, Timer T0, T1, Watchdog, PCA, ADC0, Ports and

Interrupts, which are realized in Initialize_Device routine. After
that, we read the offsets of the sense currents (without inverter
bridge enabled) - (iA, iB, iC) and the Hall sensor output (in order to
know the position of the rotor).
(see Fig. 3)

BLDC
Motor

Three-Phase InverterRectifier

Optoisolation

current sensingPWM command

reference
current

command with
microcontroller

Line
Voltage

220V / 50Hz

isolation Barrier

DC bus AH

AL

Fig. 1 Simplified circuit diagram

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

1 Electrical Cycle 1 Electrical Cycle

1 Mechanical revolution

Sequence
numbers

Hall
sensor
output

Output
torque

Phase
current

H A

H B

H C

i A

i B

i C

0 180 360 540 720Fig. 2 Waveforms of the Hall sensors, output torque, phase
current

Start

 Oscillator, Timer T0, T1,
Watchdog, PCA, ADC0, Ports

and Interrupts

- read (iA, iB, iC) offsets
- compute PID elements
- read Hall sensors

Fig. 3

In Main loop we just read the buttons and the reference current
(used for the implementation of the PID control algorithm). (see
Fig. 4)

At every 50 microseconds the Timer 3 generates an interruption that
leads in 32 microseconds to the execution of the interruption
routine, which is the most important routine in this program. At the
beginning of this routine, tests are made in order to determine the
conduction transistors in the inverter, so that a single current can be
read, that is the current with the positive amplitude. From this value
we substract the current offset that we read at the initialization. At
the beginning of this routine the START button is tested; if it
wasn’t pressed the inverter bridge is deactivated. Then the control
current closed loop is implemented (PID), which determines at the
end of this routine the calculation of the duty factor for the three
PWM outputs corresponding to the upper transistors from the
inverter bridge. The calculation of the duty factor starts from the
nominal voltage of the engine and takes into account the maximum
load current of the PWM block. (because this block is set to work
with self load, at 8 bits). After the calculation of the duty factor, the
position of the rotor is read from the Hall sensors, then the rotation
bit flag is tested and finally the “commutation” routine is called,
which has the role of commanding the transistors from the three
phase power inverter. We must mention that for every position of
the Hall sensors corresponds a commutation position of the three
phase power inverter, which was memorized in a commutation
vector. At the end of the Interruption service routine we can test the
value of the sense current, and if this value is higher then the
nominal current of the three phase power inverter, the bridge
inverter will be deactivated.

Fig. 3 presents the PID command technique used in this software,
which, first of all, was simulated with the Matlab program.

Fig. 4a shows the output of the PID block response and 4b shows
the output of the entire PID command, using the function transfer of
the Brushless DC engine:

1.135.9
1
+−e

.

The PID block was implemented using the following equations:

()
()sg
sUsT

sT
ksG d

i
RR =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

11)(, (1)

where:
kR = the proportional factor
Td = the derivation time
Ti = the integration time
The ideal equation of the PID algorithm is:

() () () ()
⎥
⎦

⎤
⎢
⎣

⎡
++= ∫

t
d

i
R dt

tdgTdg
sT

tgktu
0

1 ττ . (2)

Using the rectangle form, we obtain:

() () () () ()[]
⎭
⎬
⎫

⎩
⎨
⎧

−−++= ∑ =
k
j

d

i
R kgkg

T
Tig

T
Tkgkku

1
1 . (3)

To obtain a recursive algorithm, we calculate u(k-1):

() () () () ()[]
⎭
⎬
⎫

⎩
⎨
⎧

−+−++−=− ∑ −
=

1
1

2111 k
j

d

i
R kgkg

T
Tjg

T
Tkgkku (4)

Substracting the last two equations, we obtain:

() () ()

() () () () () ()[]
⎭
⎬
⎫

⎩
⎨
⎧

−+−−++−−

=−+=∆

2121

1

kgkgkg
T
Tkg

T
Tkgkgk

kukuku

d

i
R

 (5)

or:

() () () () ()211 210 −+−++−= kqkqkqkuku εεε , (6)

 with the following parameters:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

T
T

T
Tkq d

i
R 10 , ⎟

⎠

⎞
⎜
⎝

⎛
+−=

T
T

kq d
R 211 ,

T
T

kq d
R=2 . (7)

We can test the stability of the algorithm, with the following
equations:

00 >q , 01 qq −< , () 0210 qqqq <<+− . (8)

- read buttons
- read current reference

Fig. 4

Fig. 3 The simulation of the PID command

Fig. 4a

Fig. 4b

2.2 Software implementation

void Timer3_ISR (void) interrupt 14
{
 unsigned char h;
 SFRPAGE = CONFIG_PAGE;
 // Measure the stator current on the commanded phase
 if (LINP1 == 0)
 {
 crt = current_measure(0);
 crt_zeroval = crt_zeroval_u;
 }
 else
 if (LINP2 == 0)
 {
 crt = current_measure(1);
 crt_zeroval = crt_zeroval_v;
 }
 else
 if (LINP3 == 0)
 {
 crt = current_measure(2);
 crt_zeroval = crt_zeroval_w;
 }

 if(crt < crt_zeroval)
 crt = 0;
 else
 crt = crt - crt_zeroval;

 if(crt_ref>0)
 {
 if(start==0)
 // Stop the motor
 {
 crt_ref = 0;
 if(pid_out == 0)
 {
 SFRPAGE = TMR3_PAGE;
 TR3 = 0;
 TF3 = 0;
 disable_command();
 pid_reset();
 main_flag = 0;
 crt_ref_temp = 0;

 if(brake)
 {

 delay_ms(3000);
 SFRPAGE = CONFIG_PAGE;
 LEDGI = 1;
 SFRPAGE = PCA0_PAGE;
 PCA0CPH3 = block_dc;
 PCA0CPH2 = block_dc;
 PCA0CPH1 = block_dc;

h = hallPosition(); // h equals hall position
commutate(h); // commutate motor, enables PWM

 SFRPAGE = CONFIG_PAGE;
 P_EN_C = 0;
 return;
 }
 }
 }
 else
 {
 SFRPAGE = CONFIG_PAGE;
 LEDGI = 0;

 if(P_EN_C == 1)
 {
 pid_reset();

 P_EN_C = 0;
 }
 }

 // change rotation sense
 if (reverse)
 {
 crt_ref = 0;
 if(pid_out == 0)
 {

SFRPAGE = TMR3_PAGE;
 TR3 = 0;
 disable_command();
 pid_reset();

delay_ms(3000);
 reverse = 0;
 rot_sense = ~rot_sense;
 SFRPAGE = PCA0_PAGE;
 P_EN_C = 0;
 SFRPAGE = TMR3_PAGE;
 TR3 = 1;
 }
 }

 // don't allow current setpoint to change suddenly
 if(crt_ref > crt_ref_old)
 {
 if (pid_cnt == MAX_PID_CNT)
 crt_ref = crt_ref_old + 1;
 else
 crt_ref = crt_ref_old;
 }
 else
 if(crt_ref_old > crt_ref)
 {
 if (pid_cnt == MAX_PID_CNT)
 crt_ref = crt_ref_old - 1;
 else
 crt_ref = crt_ref_old;
 }

 pid_cnt++;
 if (pid_cnt > max_pid_cnt)
 pid_cnt = 0;

crt_ref_old = crt_ref;
crt = (int)(((long)crt*5553L) >> 8); // Convert measured current to
mA

 eps_1 = eps_0; // Store previous error value
 eps_0 = crt_ref - crt;// Compute current error value

integral += eps_0; // Compute integral term
 if(integral > max_integral)// Avoid integral term overflow

integral = max_integral;
 else

if(integral < -max_integral)
 integral = -max_integral;
 derivative = eps_0 - eps_1;// Compute derivative term
 // Compute PID output

pid_out = (((long)eps_0*kr)) >> 10;
pid_out += (((long)integral) * ki) >> 10;

 pid_out += (((long)derivative*kd)) >>10;

 // Limit PID output
 if (pid_out > max_dc)
 pid_out = max_dc;
 if (pid_out < 0)
 pid_out = 0;

 pid_out_old = pid_out;
 }
 else
 {
 disable_command();
 pid_reset();
 }

 SFRPAGE = PCA0_PAGE;
 PCA0CPH3 = pid_out;
 PCA0CPH2 = pid_out;
 PCA0CPH1 = pid_out;

 h = hallPosition(); // h equals hall position
 commutate(h); // commutate motor, enables PWM

main_flag = 0;
SFRPAGE = TMR3_PAGE;
TF3 = 0;

}

3. Conclusions

This software is very useful for the development of easy and safe
applications where a current closed loop is required. After the
calculation the parameters kr, ki and kd (using formulas) and the
simulation in Matlab program, it is easy to introduce these values in
the software as global constants (if it is not necessary to change
these values when the rotor is still in move) and to see the feedback
on the prototype platform. In our case, we give an external current
value to the microcontroller, which tries to control the sense current
(obtained from the load) at the same value imposed by us, according
to the parameters kr, ki and kd.

4. References

[1] Silicon Laboratories, C8051F120 – Small Form Factor.
[2] Phillips Semiconductors 80C51-Based 8-Bit Microcontrollers
[3] Texas Instruments,Data Book, 1992.
[4] Siemens, Data Book, ICs for Communications, 1992.
[5] International Rectifier – Motor Drives Applications.
[6] Microchip – Brushless DC Motor Control Made Easy –

AN857
[7] Microchip – Brushless DC Motor Control Using

PIC18FXX31 MCUs - AN899
[8] Petrut Duma, "Microcontrolerul INTEL8051 Aplicatii",
 ETP Tehnopress, Iasi-2003.
[9] N. Mohan, T.M. Undeland, W. P. Robbinson, “Power

Electronics: Converters Applications and Design,” Willey
& Sons, New York, 1989.

[10] C. Lazar, “Ingineria Reglarii Automate – Partea a II-a”, on-
line courses at:
http://www.ac.tuiasi.ro/ro/library/ira/ira.html

