
Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 1 of 17 -

Microcontroller Components

Errata Sheet
October 9, 1998 / Release 1.2

Device: SAB-C167CR-16FM

Stepping Code / Marking: ES-AC, ES1-AC, ES1*-AC

Package: MQFP-144

This Errata Sheet describes the deviations from the current user documentation. The
classification and numbering system is module oriented in a continual ascending sequence
over several derivatives, as well already solved deviations are included. So gaps inside this
enumeration could occur.

The current documentation is: Data Sheet: C167CR-16FM Data Sheet 03.97,
User’s Manual: C167 Derivatives User’s Manual V2.0 03.96
Instruction Set Manual 12.97 Version 1.2

Note: Devices marked with EES- or ES are engineering samples which may not be
completely tested in all functional and electrical characteristics, therefore they should
be used for evaluation only.

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Change summary to Errata Sheet Rel.1.1 for devices with stepping code/marking
ES-AC, ES1-AC, ES1*-AC:

• PEC Transfers after JMPR (BUS.18)
• Modifications of ADM field while bit ADST = 0 (ADC.11)
• P0H I/O conflict during XPER access and external 8-bit non-multiplexed bus (X10):

description modified
• Note about workaround for Tasking compiler added for problem CPU.16
• Note on Interrupt Register Behaviour of CAN module added
• new naming convention for DC/AC specification deviations used
• Note about overload conditions modified (see note 1.) in section Deviations from DC

Characteristics)
• Note about Address Window Arbitration added (see end of document)

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 2 of 17 -

Functional Problems:

PWRDN.1: Execution of PWRDN Instruction while pin NMI# = high

When instruction PWRDN is executed while pin NMI# is at a high level, power down mode should not
be entered, and the PWRDN instruction should be ignored. However, under the conditions described
below, the PWRDN instruction may not be ignored, and no further instructions are fetched from
external memory, i.e. the CPU is in a quasi-idle state. This problem will only occur in the following
situations:
a) the instructions following the PWRDN instruction are located in external memory, and a multiplexed

bus configuration with memory tristate waitstate (bit MTTCx = 0) is used, or
b) the instruction preceding the PWRDN instruction writes to external memory or an XPeripheral

(XRAM, CAN), and the instructions following the PWRDN instruction are located in external
memory. In this case, the problem will occur for any bus configuration.

Note: the on-chip peripherals are still working correctly, in particular the Watchdog Timer will reset the
device upon an overflow. Interrupts and PEC transfers, however, can not be processed. In case NMI#
is asserted low while the device is in this quasi-idle state, power down mode is entered.

Workaround:

Ensure that no instruction which writes to external memory or an XPeripheral precedes the PWRDN
instruction, otherwise insert e.g. a NOP instruction in front of PWRDN. When a muliplexed bus with
memory tristate waitstate is used, the PWRDN instruction should be executed out of internal RAM or
XRAM.

CPU.7: Warm HW Reset (Pulse Length < 1032 TCL)

In case a HW reset signal with a length < 1032 TCL (25.8 µs @ 20 MHz) is applied to pin RSTIN#, the
internal reset sequence may be terminated before the specified time of 1032 TCL, and not all SFRs
and ESFRs may be correctly reset to their default state. Instead, they maintain the state which they
had before the falling edge of RSTIN#. The problem occurs when the falling edge of the
(asynchronous) external RSTIN# signal is coincident with a specific internal state of the controller. The
problem will statistically occur more frequently when waitstates are used on the external bus.

Workaround:

Extend the HW reset signal at pin RSTIN# (e.g. with an external capacitor) such that it stays below VIL
(0.2 Vcc - 0.1 V) for at least 1032 TCL.

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 3 of 17 -

CPU.8: Jump instructions in EXTEND sequence

When a jump or call is taken in an EXTS, EXTSR, EXTP, or EXTPR sequence, a following data access
included in the EXTEND sequence might be performed to a wrong segment or page number.

Note: ATOMIC or EXTR sequences are not affected by this problem.

Example: Accessing double-word data with a check on segment overflow between the two accesses
(R5 contains 8-bit segment number, R4 contains 16-bit intra-segment offset address):

EXTS R5,#4 ; start EXTEND sequence
MOV R10,[R4+] ; get first word
CMP R4,#0 ; check for segment overflow
JMPR cc_NZ,Next ; jump if no segment overflow
ADD R5,#1 ; increment to next segment
EXTS R5,#1 ; continue EXTEND sequence

Next: MOV R11,[R4] ; get second word

With this sequence, the problem can occur when the jump is taken to label Next; the data access here
might use a wrong segment number.

Workaround:

Do not use jumps or calls in EXTS, EXTSR, EXTP, or EXTPR sequences. This can be done very easily
since only an actual data access must be included in an EXTEND sequence. All other instructions,
such as comparisons and jumps, do not necessarily have to be in the EXTEND sequence.

For the example shown above, there are several possibilities to get around the problem:

a) with a jump, but EXTEND sequence only for the data accesses

EXTS R5,#1 ; EXTEND sequence only for data access
MOV R10,[R4+] ; get first word
CMP R4,#0 ; check for segment overflow
JMPR cc_NZ,Next ; jump if no segment overflow
ADD R5,#1 ; increment to next segment

Next: EXTS R5,#1 ; second EXTEND sequence for data access
MOV R11,[R4] ; get second word

b) without a jump

EXTS R5,#4 ; EXTEND sequence
MOV R10,[R4] ; get first word
ADD R4,#2 ; increment pointer here
ADDC R5,#0 ; add possible overflow from pointer inc.
EXTS R5,#1 ; continue EXTEND sequence
MOV R11,[R4] ; get second word

The first EXTEND instruction of example b) can also be modified such that only the following data
access is included in the EXTEND sequence (EXTS R5,#1). This additionally has the effect of a
reduced interrupt latency.

Notes on Compilers and Operating Systems

Such critical sequences might be produced within library functions of C-Compilers when accessing
huge double-word data, or in operating systems.

From the following compiler versions, we currently know that they are not affected by this problem:
BSO/Tasking V4.0r3
HighTec C16x-GNU-C V3.1
Keil C166 (from V2.60)

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 4 of 17 -

CPU.9: PEC Transfers during instruction execution from Internal RAM

When a PEC transfer occurs after a jump with cache hit during instruction execution from internal RAM
(locations 0F600h - 0FDFFh), the instruction following the jump target instruction may not be (correctly)
executed. This problem occurs when the following sequence of conditions is true:

i) a loop terminated with a jump which can load the jump target cache (possible for JMPR, JMPA, JB,
JNB, JBC, JNBS) is executed in the internal RAM

ii) at least two loop iterations are performed, and no JMPS, CALLS, RETS, TRAP, RETI instruction or
interrupt is processed between the last and the current iteration through the loop (i.e. the condition for a
jump cache hit is true)

iii) a PEC transfer is performed after the jump at the end of the loop has been executed

iv) the jump target instruction is a double word instruction

Note: No problem will occur during instruction execution from the internal XRAM (locations 0E000h -
0E7FFh).

Workaround 1:

Place a single word instruction (e.g. NOP) at the jump target address in the internal RAM.

Workaround 2:

Use JMPS (unconditional) or JMPI (conditional) instructions at the end of the loop in the internal RAM.
These instructions will not use the jump cache.

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 5 of 17 -

CPU.10: Bit Protection for register TFR

The bit protection for the Trap Flag Register (TFR) does not operate correctly: when bits (trap flags) in
this register are modified via bit or bit-field instructions, other trap flags which could have been set after
the read phase and before the write phase of these instructions, and which are not explicitly selected
by the bit instruction itself, may erroneously be cleared. This way, a trap event may be lost.

Typically, bit accesses to register TFR are only performed in trap service routines in order to clear the
trap flag which has caused the trap. In practice, the malfunction of the bit protection may only cause
problems in systems where the NMI trap (asynchronous event) is used. All other situations where the
malfunction could have an effect are under software control: the occurrence of a class A stack
underflow/overflow trap in a class B trap service routine, or the intentional use of (illegal) instructions
which may cause a class B trap condition in a class A trap routine.

Workaround:
When the NMI trap is used, connect the NMI# pin to a pin of the C167 which is capable of generating
an interrupt request on a falling signal edge. In each trap routine, test the respective interrupt request
flag xxIR after modifications of trap flags in register TFR have been performed, e.g. as follows:

TrapEntry:
BCLR STKOF ; clear (stack overflow) trap flag
... ; service (stack overflow) trap
...
JNB xxIR, Trap Exit ; test for lost NMI
BSET NMI ;

TrapExit:
RETI

In the NMI trap routine, both the actual NMI flag and the auxiliary interrupt request flag xxIR must be
cleared.

CPU.11: Stack Underflow Trap during Restart of interrupted Multiply

Wrong multiply results may be generated when a STUTRAP (stack underflow) is caused by the last
implicit stack access (= pop PSW) of a RETI instruction which restarts an interrupted MUL/MULU
instruction.

No problem will occur in systems where the stack overflow/underflow detection is not used, or where
an overflow/underflow will result in a system reset.

Workaround 1:
Avoid a stack overflow/underflow e.g. by
- allocating a larger internal system stack (via bitfield STKSZ in register SYSCON), or
- reducing the required stack space by reducing the number of interrupt levels, or
- testing in each task procedure whether a stack underflow is imminent, and anticipating the stack refill
procedure before executing the RETI instruction.

Workaround 2:
Disable MULx instructions from being interrupted e.g. with the following instruction sequence:

ATOMIC #1
MULx Rm, Rn

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 6 of 17 -

Workaround 3 (may be selected if no divide operations are used in an interruptible program
section):

In each interrupt service routine (task procedure), always clear bit MULIP in the PSW and set register
MDC to 0000h. This will cause an interrupted multiplication to be completely restarted from the first
cycle after return to the priority level on which it was interrupted.

In case that an interrupt service routine is also using multiplication, only registers MDH and MDL must
be saved/restored when using this workaround, while bit MULIP and register MDC must be set to zero.

CPU.12: Access to internal Flash with EXTS/EXTSR instructions

EXTS instructions (EXTS, EXTSR) do not work correctly for data accesses to internal Flash when the 2
msbs of the intra-segment address are different from the 2 lsbs of the DPP which is selected by these 2
msbs of the intra-segment address. In this case, the 2 msbs of the intra-segmented address are
substituted by the 2 lsbs of the selected DPP.

Example:
EXTS #1, #1 ; Flash access to be performed in segment 1
MOV R0, 8000h ; intra-segment address to be accessed = 8000h

; 2 msbs = 10b select DPP2

In case DPP2 contains 000h, location 1: 0000h is accessed instead of 1:8000h.

Workarounds:

Use e.g. EXTP/EXTPR instructions instead of EXTS/EXTSR.

On C level, workarounds depend on the memory model and data types.

For the KEIL compiler, the following specific workaround is suggested:

a) do not use the memory models HLARGE or HCOMPACT and do not use the memory types huge or
xhuge, only in these combinations the EXTS/EXTSR instruction is generated.

b) when memory types huge or xhuge are required, use the C166xxx.LIB run-time libraries instead of
the C167xxx.LIB run-time library files and do not compile with the MOD167 directive. ESFRs may
be referenced with addresses casted to pointers, e.g. #define DP0L (*((unsigned int volatile sdata*)
0xF100))

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 7 of 17 -

CPU.16: Data read access with MOVB [Rn], mem instruction to internal Flash

When the MOVB [Rn], mem instruction (opcode 0A4h) is executed, where

1. mem specifies a direct 16-bit byte operand address in the internal Flash memory,
AND
2. [Rn] points to an even byte address, while the contents of the word which includes the byte

addressed by mem is odd,
OR
[Rn] points to an odd byte address, while the contents of the word which includes the byte
addressed by mem is even

the following problem occurs:

a) when [Rn] points to external memory or to the X-Peripheral (XRAM, CAN) address space, the data
value which is written back is always 00h

b) when [Rn] points to the internal RAM or SFR/ESFR address space,
- the (correct) data value [mem] is written to [Rn]+1, i.e. to the odd byte address of the selected word in

case [Rn] points to an even byte address,
- the (correct) data value [mem] is written to [Rn]-1, i.e. to the even byte address of the selected word

in case [Rn] points to an odd byte address.

Workaround:
When mem is an address in internal ROM, substitute instruction

MOVB [Rn], mem e.g. by MOV Rm, #mem
MOVB [Rn], [Rm]

Notes on compilers:
- the Keil C166 Compiler V3.10 has been extended by the directive FIXROM which avoids accesses

to ’const’ objects via the instruction MOVB [Rn], mem.
- the Tasking compiler provides a workaround for this problem from version V6.0r2 on

CPU.17: Arithmetic Overflow by DIVLU instruction

For specific combinations of the values of the dividend (MDH, MDL) and divisor (Rn), the Overflow (V)
flag in the PSW may not be set for unsigned divide operations, although an overflow occurred.

E.g.:
MDH MDL Rn MDH MDL
F0F0 0F0Fh : F0F0h = FFFF FFFFh, but no Overflow indicated !

 (result with 32-bit precision: 1 0000h)

The same malfunction appears for the following combinations:
n0n0 0n0n : n0n0
n00n 0nn0 : n00n
n000 000n : n000
n0nn 0nnn : n0nn where n means any Hex Digit between 8 ... F

i.e. all operand combinations where at least the most significant bit of the dividend (MDH) and the
divisor (Rn) is set.

In the cases where an overflow occurred after DIVLU, but the V flag is not set, the result in MDL is
equal to FFFFh.

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 8 of 17 -

Workaround:

Skip execution of DIVLU in case an overflow would occur, and explicitly set V = 1.

E.g.: CMP Rn, MDH
JMPR cc_ugt, NoOverflow ; no overflow if Rn > MDH
BSET V ; set V = 1 if overflow would occur
JMPR cc_uc, NoDivide ; and skip DIVLU

NoOverflow: DIVLU Rn
NoDivide: ... ; next instruction, may evaluate correct V flag

Note:
- the KEIL C compiler, run time libraries and operating system RTX166 do not generate or use
instruction sequences where the V flag in the PSW is tested after a DIVLU instruction.

- with the TASKING C166 compiler, for the following intrinsic functions code is generated which uses
the overflow flag for minimizing or maximizing the function result after a division with a DIVLU:

_div_u32u16_u16()
_div_s32u16_s16()
_div_s32u16_s32()

Consequently, an incorrect overflow flag (when clear instead of set) might affect the result of one of the
above intrinsic functions but only in a situation where no correct result could be calculated anyway.
These intrinsics first appeared in version 5.1r1 of the toolchain.

Libraries: not affected

BUS.14: Spikes on CS# Lines when using RD/WR-CS#

Spikes of >= 5 ns width from Vcc to Vss may occur on Port 6 lines configured as CS#:

1. The spikes occur on all lines defined as CS# when at least one of them is configured as RD/WR-
CS#, and when the low-to-high transition of ALE, RD# or WR#, and RD-CS# or WR-CS# occur
simultaneously (i.e. when a non-muliplexed bus without memory tristate WS is used).

2. Spikes may also occur when in all BUSCONs where RD/WR-CS# was configured a memory tristate
WS was programmed, and read/write accesses to the internal XRAM were performed.

Workaround:
Use Address-CS# instead of RD/WR-CS# for all BUSCONx registers, i.e. leave bits BUSCONx[15:14]
= 00b.

Note: using memory tristate WS in combination with RD/WR-CS# does not generally solve the problem
(see above, item 2).

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 9 of 17 -

BUS.18: PEC Transfers after JMPR instruction

Problems may occur when a PEC transfer immediately follows a taken JMPR instruction when the
following sequence of 4 conditions is met (labels refer to following examples):

1. in an instruction sequence which represents a loop, a jump instruction (Label_B) which is capable
of loading the jump cache (JMPR, JMPA, JB/JNB/JBC/JNBS) is taken

2. the target of this jump instruction directly is a JMPR instruction (Label_C) which is also taken and
whose target is at address A (Label_A)

3. a PEC transfer occurs immediately after this JMPR instruction (Label_C)
4. in the following program flow, the JMPR instruction (Label_C) is taken a second time, and no other

JMPR, JMPA, JB/JNB/JBC/JNBS or instruction which has branched to a different code segment
(JMPS/CALLS) or interrupt has been processed in the meantime (i.e. the condition for a jump
cache hit for the JMPR instruction (Label_C) is true)

In this case, when the JMPR instruction (Label_C) is taken for the second time (as described in
condition 4 above), and the 2 words stored in the jump cache (word address A and A+2) have been
processed, the word at address A+2 is erroneously fetched and executed instead of the word at
address A+4.

Note: the problem does not occur when
- the jump instruction (Label_C) is a JMPA instruction
- the program sequence is executed from internal Flash

Example1:

Label_A: instruction x ; Begin of Loop
 instruction x+1
.....

Label_B: JMP Label_C ; JMP may be any of the following jump instructions:
 JMPR cc_zz, JMPA cc_zz, JB/JNB/JBC/JNBS

; jump must be taken in loop iteration n
; jump must not be taken in loop iteration n+1

.....
Label_C: JMPR cc_xx, Label_A ; End of Loop

; instruction must be JMPR (single word instruction)
; jump must be taken in loop iteration n and n+1
; PEC transfer must occur in loop iteration n

Example2:

Label_A: instruction x ; Begin of Loop1
 instruction x+1
.....

Label_C: JMPR cc_xx, Label_A ; End of Loop1, Begin of Loop2
; instruction must be JMPR (single word instruction)
; jump not taken in loop iteration n-1, i.e. Loop2 is entered
; jump must be taken in loop iteration n and n+1
; PEC transfer must occur in loop iteration n

.....
Label_B: JMP Label_C ; End of Loop2

; JMP may be any of the following jump instructions:
 JMPR cc_zz, JMPA cc_zz, JB/JNB/JBC/JNBS

; jump taken in loop iteration n-1

A code sequence with the basic structure of Example1 was generated e.g. by a compiler for
comparison of double words (long variables).

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 10 of 17 -

Workarounds:
1. use a JMPA instruction instead of a JMPR instruction when this instruction can be the direct target

of a preceding JMPR, JMPA, JB/JNB/JBC/JNBS instruction, or

2. insert another instruction (e.g. NOP) as branch target when a JMPR instruction would be the direct
target of a preceding JMPR, JMPA, JB/JNB/JBC/JNBS instruction, or

3. change the loop structure such that instead of jumping from Label_B to Label_C and then to
Label_A, the jump from Label_B directly goes to Label_A.

Notes on compilers:

In the Hightec compiler beginning with version Gcc 2.7.2.1 for SAB C16x – V3.1 Rel. 1.1, patchlevel 5,
a switch –m bus18 is implemented as workaround for this problem. In addition, optimization has to be
set at least to level 1 with –u1.

The Keil C compiler and run time libraries do not generate or use instruction sequences where a JMPR
instruction can be the target of another jump instruction, i.e. the conditions for this problem do not
occur.

In the TASKING C166 Software Development Tools, the code sequence related to problem BUS.18
can be generated in Assembly. The problem can also be reproduced in C-language by using a
particular sequence of GOTOs.

With V6.0r3, TASKING tested all the Libraries, C-startup code and the extensive set of internal test-
suite sources and the BUS.18 related code sequence appeared to be NOT GENERATED.

To prevent introduction of this erroneous code sequence, the TASKING Assembler V6.0r3 has been
extended with the CHECKBUS18 control which generates a WARNING in the case the described code
sequence appears. When called from within EDE, the Assembler control CHECKBUS18 is
automatically 'activated'.

ADC.7: Channel Injection coincident with start of Standard Conversion

When a request for an injected conversion is triggered simultaneously with the start of a standard
conversion (single channel, auto scan, continuous modes), only the standard conversion will be
performed. The channel injection request and all further requests for injected conversions are not
processed (i.e. they are blocked). This problem may only occur
a) within a time window of 2 TCL after the instruction which starts a standard conversion has been

executed, in case the channel injection is triggered by hardware (CC31), or
b) when the channel injection is triggered via software by the same instruction which writes to ADCON

in order to start a standard conversion.

Workaround:

When a channel injection is to be triggered by software, use separate instructions and first start the
standard conversion, and then trigger the channel injection.

When a channel injection is to be triggered by hardware, interrupt request flag CC31IR may be used to
detect whether the request was generated in the critical time window. The blocking of injected
conversion requests can be removed by forcing a 0-1 transition of bit ADCRQ (due to internal timing, it
is not sufficient to clear ADCRQ within the MOV ADCON instruction which starts the standard
conversion; ADCRQ must explicitly be cleared after this instruction):

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 11 of 17 -

BCLR CC31IR ; clear CC31IR for later evaluation
MOV ADCON, #XYXXh ; start standard conversion,

; set ADCRQ = 0, ADCIN = 1
BCLR ADCRQ ; clear ADCRQ to avoid blocking of

; further injection requests
EXTR #1
JNB CC31IR, Done ; check for injection request
BSET ADCRQ ; request channel injection if required

Done: ...

Note: an injected conversion in progress will be aborted when a standard conversion is started (0-1
transition of bit ADST) by software. However, bit ADCRQ is not automatically cleared to 0, thus
blocking further channel injection requests. Therefore, a standard conversion should only be started
when no injected conversion is in progress (e.g. in the interrupt routine after completion of a channel
injection), or, if abortion of an injected conversion is tolerable, bit ADCRQ should be set to 0 by the
instruction which starts a standard conversion in order not to block further injections.

This problem will be fixed in the next steps as follows:

- when an injected conversion is in progress and a standard conversion is started by software, the
injected conversion is completed and then the standard conversion is performed.
- when an injected conversion is triggered simultaneously with the start of a standard conversion, the
injected conversion is performed first, and then the standard conversion is started.
- when a standard conversion is in progress and an injected conversion is requested, the conversion of
the currently selected channel of the standard conversion is completed and then the injected
conversion is performed.

ADC.11: Modifications of ADM field while bit ADST = 0

The A/D converter may unintentionally start one auto scan single conversion sequence when the
following sequence of conditions is true:
(1) the A/D converter has finished a fixed channel single conversion of an analog channel n > 0 (i.e.

contents of ADCON.ADCH = n during this conversion)
(2) the A/D converter is idle (i.e. ADBSY = 0)
(3) then the conversion mode in the ADC Mode Selection field ADM is changed to Auto Scan Single

(ADM = 10b) or Continuous (ADM = 11b) mode without setting bit ADST = 1 with the same
instruction

Under these conditions, the A/D converter will unintentionally start one auto scan single conversion
sequence, beginning with channel n-1, down to channel number 0.

In case the channel number ADCH has been changed before or with the same instruction which
selected the auto scan mode, this channel number has no effect on the unintended auto scan
sequence (i.e. it is not used in this auto scan sequence).

Note:
When a conversion is already in progress, and then the configuration in register ADCON is changed,

- the new conversion mode in ADM is evaluated after the current conversion
- the new channel number in ADCH and new status of bit ADST are evaluated after the current

conversion when a conversion in fixed channel conversion mode is in progress, and after the
current conversion sequence (i.e. after conversion of channel 0) when a conversion in an auto scan
mode is in progress.

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 12 of 17 -

In this case, it is a specified operational behaviour that channels n-1 .. 0 are converted when ADM is
changed to an auto scan mode while a fixed channel conversion of channel n is in progress (see e.g.
C167 User’s Manual, V2.0, p16-4)

Workaround:

When an auto scan conversion is to be performed, always start the A/D converter with the same
instruction which sets the configuration in register ADCON.

CAPCOM.1: Software Update of CAPCOM Timers

When a CAPCOM Timer is updated via software with a value which exactly matches the contents of an
associated CAPCOM register (configured for compare mode), it may happen that the programmed
compare event is not generated (as expected) within the next 16 TCL, i.e. it is lost in the current timer
period. This behaviour statistically occurs in 50% of the cases where the timer update value is equal to
a compare value.

Correct compare events are only assured if the timer is incremented/reloaded by hardware.

Workaround:
Do not perform software updates of a CAPCOM timer if compare events are programmed for the
associated CAPCOM registers.

RST.1: System Configuration via P0L.0 during Software/Watchdog
Timer Reset

Unlike P0L.5 .. P0L.1, P0L.0 is not disregarded during software or watchdog timer reset. This
means that when P0L.0 is (erroneously) externally pulled low at the end of the internal software or
watchdog timer reset sequence, the device will enter emulation mode.
Therefore, ensure that the level at P0L.0 is above the minimum input high voltage VIHmin= 0.2 Vcc + 0.9
V (1.9 V @ Vcc = 5.0 V) at the end of the internal reset sequence.

X9: Read Access to XPERs in Visible Mode

The data of a read access to an XBUS-Peripheral (XRAM, CAN) in Visible Mode is not driven to the
external bus. PORT0 is tristated during such read accesses.

Note that in Visible Mode PORT1 will drive the address for an access to an XBUS-Peripheral, even
when only a multiplexed external bus is enabled.

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 13 of 17 -

X10: P0H I/O conflict during XPER access and external 8-bit Non-multiplexed
bus

When an external 8-bit non-multiplexed bus mode is selected,
and P0H is used for general purpose I/O,
and an internal (byte or word) write access to the XRAM or CAN module is performed,
and an external bus cycle is directly following the internal XBUS write cycle,
then P0H is actively driven with the write data for 1TCL (pulse on P0H).

Note that if any of the other bus modes is selected in addition to the 8-bit non-multiplexed mode, P0H
can not be used for I/O per default.

The pulses will occur after the rising edge of ALE of the first external bus cycle that directly follows the
internal XBUS write cycle.

Workarounds:
- use a different port instead of P0H for I/O when (only) an external 8-bit non-multiplexed bus mode

is selected
- or use a different bus type (e.g. 8-bit multiplexed, where P1H may be used for I/O instead of P0H)
- or do not perform an external bus access directly after an XBUS write access:

this may be achieved by an instruction sequence which is executed in internal ROM/Flash/OTP,
or internal RAM, or internal XRAM
e.g. ATOMIC #3 ; to prevent PEC transfers which may access external memory

instruction which writes to XBUS peripheral
NOP
NOP

X11: Illegal Bus Trap after XPER access in Single Chip Mode

When single chip mode has been selected during reset (pin EA# = high), and no external bus has been
enabled in addition in any of the BUSCONx registers, the following problem will occur:

an illegal external bus access trap is generated when an access to an XBUS peripheral (XRAM, CAN)
is performed

Workaround:
Enable an external bus in one of the BUSCONx registers before the first XPER (XRAM, CAN) access
is performed.
E.g.:
MOV BUSCON1, # 04C0h ; Multiplexed bus, port 0 must not be used for I/O

; ADDRSEL1 = 0000h (default):
; --> resulting dummy window size: 4K @ 00:0000h

P0H.4 should be pulled low during HW-reset
--> no segment address output at port 4, port 4 free for I/O and CAN

P0H.1 should be pulled low during HW-reset
--> no CS# output at port 6[4:0], pins free for I/O

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 14 of 17 -

Deviations from Electrical- and Timing Specification:

The following table lists the deviations of the DC/AC characteristics from the specification in the
C167CR-16FM Data Sheet 3.97:

- DC Characteristics:

Supply Voltage Vcc = 5 V ± 5 % instead of 5 V ± 10 %

3UREOHP 3DUDPHWHU 6\PERO /LPLW 9DOXHV 8QLW 7HVW

VKRUW QDPH min. max. &RQGLWLRQ

'&�,,'�� Idle mode supply
current

IID - ��+2*fcpu

instead of
30+2*fcpu

mA RSTIN# = VIH1,
fcpu in MHz

'&�,3'�� Power down mode
supply current

IPD - not tested1) mA

'&�,2=��� Input leakage current
(Port 5)

IOZ1 - ±����
instead of
±200

nA 0.45�V < VIN <
Vcc

'&�,2=��� Input leakage current
(all other inputs)

IOZ2 - ±����
instead of
±500

nA 0.45�V < VIN <
Vcc

1) typically several mA

Notes:

1.) The protection mechanism for overload conditions (Vin > Vcc+0.5V or Vin < Vss-0.5V) on the
C167CR-16FM is different from ROM and ROMless devices. In particular on pins NMI#, RSTIN#,
XTAL1, and Port 5, the input voltage must not exceed the absolute maximum ratings (-0.5V,
Vcc+0.5V). Otherwise, external clamp diodes must be used. When an overload condition occurs on
Port 5 pins, the specified TUE for the A/D converter is no longer guaranteed.

2.) Pin READY# has an internal pull-up (all C167xx derivatives). This will be documented in the next
revision of the Data Sheet.

3.) During Reset, the internal pull-ups on P6.[4:0] are active, independent whether the respective pins
are used for CS# function after reset or not.

- A/D Converter Characteristics

ADCC.1: Total unadjusted error TUE = ± 3 LSB instead of ± 2 LSB

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 15 of 17 -

3UREOHP
VKRUW�QDPH

Parameter Symbol Max. CPU
 = 20

 Clock
 MHz

Variable
1/2TCL =

 CPU Clock
 1 to 20 MHz

Unit

min. max. min. max.

$&�W��� Address setup to
ALE

t6 �+ta
instead of
10+ta

- TCL-��+ta
instead of
TCL-15+ta

- ns

$&�W���� RD#/WR# low
time
(with R/W Delay)

t12 ��+tc
instead of
40+tc

- 2TCL-��+tc
instead of
2TCL -10+tc

- ns

$&�W���� RD# to valid data
in
(with RW-delay)

t14 - �+tc
instead of
30+tc

- 2TCL-��+tc
instead of
2TCL -20+tc

ns

$&�W���� ALE low to valid
data in
(no RW-delay)

t16 - ��+ta+tc
instead of
55+ta+tc

- 3TCL-��+ta+tc
instead of
3TCL-20+ta+tc

ns

$&�W���� Address to valid
data in

t17 - ��+ta+tc
instead of
70+2ta+tc

- 4TCL-��+2ta+tc
instead of
4TCL-30+2ta+tc

ns

$&�W���� Data valid to
WR#

t22 ��+tc
instead of
25+tc

- 2TCL-��+tc
instead of
2TCL-25+tc

- ns

$&�W���� Address hold
after RD#/WR#

t28 ����+tf
instead of
0+tf

- ����+tf
instead of
0+tf

- ns

$&�W���� CLKOUT fall
time

t33 - ��
instead of
5

- ��
instead of
5

ns

$&�W���� CLKOUT rising
edge to ALE
falling edge

t34 ��+ta
instead of
0+ta

10+ta ��+ta
instead of
0+ta

10+ta ns

$&�W���� Synchronous
READY# setup
time to CLKOUT

t35 ��
instead of
15

- ��
instead of
15

- ns

$&�W���� CS# low to valid
data in

t39 - ��+2ta+tc
instead of
55+2ta+tc

- 3TCL-��+2ta+tc
instead of
3TCL-20+2ta+tc

ns

$&�W���� RdCS# low to
valid data in (with
R/W Delay)

t46 - ��+tc
instead of
25+tc

- 2TCL-��+tc
instead of
2TCL-25+tc

ns

$&�W���� HOLD# input
setup time to
CLKOUT

t61 ��
instead of
20

- ��
instead of
20

- ns

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 16 of 17 -

History List (since device step ES-AC)

Functional Problems

Functional
Problem

Short Description Fixed in
step

ADC.7 Channel Injection coincident with start of standard conversion

ADC.11 Modifications of ADM field while bit ADST = 0

CAPCOM.1 Software Update of CAPCOM Timers

CPU.7 Warm hardware reset (pulse length < 1032 TCL)

CPU.8 Jump instruction in EXTEND sequence

CPU.9 PEC Transfers during instruction execution from Internal RAM

CPU.10 Bit protection for register TFR

CPU.11 Stack Underflow during Restart of Interrupted Multiply

CPU.12 Access to internal Flash with EXTS/EXTSR instructions

CPU.16 Data read access with MOVB [Rn], mem instruction to internal Flash

CPU.17 Arithmetic Overflow by DIVLU instruction

BUS.14 Spikes on CS# Lines when using RD/WRCS#

BUS.18 PEC Transfers after JMPR Instruction

RST.1 System Configuration via P0L.0 during Software/Watchdog Timer Reset

PWRDN.1 Execution of PWRDN Instruction while pin NMI# = high

X9 Read Access to XPERs in Visible Mode

X10 P0H I/O conflict during XPER access and external 8-bit Non-multiplexed bus

X11 Illegal Bus Trap after XPER access in Single Chip Mode

Semiconductor Group Errata Sheet, C167CR-16FM, ES/ES1/ES1*-AC, 1.2, Mh - 17 of 17 -

AC/DC Deviations

AC/DC
Deviation

Short Description Fixed in
step

Supply Voltage Vcc = 5 V ± 5 %

DC.IID.1 Idle Mode Supply Current 40+2*fcpu mA

DC.IPD.2 Power down mode supply current: not tested

DC.IOZ1.1 Input leakage current (Port 5): 1000nA

DC.IOZ2.1 Input leakage current (all other): 1000nA

AC.t6.3 Address setup to ALE TCL-25ns

AC.t12.1 RD#WR# low time (with RW-delay) 2TCL-25ns

AC.t14.2 RD# to valid data in (with RW-delay) 2TCL-45ns

AC.t16.3 ALE low to valid data in (no RW-delay) 3TCL-35ns

AC.t17.1 Address to valid data in 4TCL-40ns

AC.t22.3 Data valid to WR# 2TCL-35ns

AC.t28.1 Address hold after RD#/WR# -2.5ns

AC.t33.1 CLKOUT fall time 10ns

AC.t34.2 CLKOUT rising edge to ALE falling edge min –5ns

AC.t35.1 Synchronous READY# setup time to CLKOUT 30ns

AC.t39.1 CS# low to valid data in 3TCL-30ns

AC.t46.2 RdCS# low to valid data in (with R/W Delay) 2TCL-35ns

AC.t61.1 HOLD# input setup time to CLKOUT 35ns

ADCC.1 TUE = ± 3 LSB

Notes

1.� The Address Window Arbitration feature as described in the C167 Derivatives User's Manual
V2.0, p.8-22 is not yet implemented in C167CR-16FM devices up to and including step AC. For
these devices, the description in C167 User's Manual V1.0 still applies in this context, i.e. the
address windows defined by ADDRSEL1 through ADDRSEL4 must not overlap each other.

2.� Interrupt Register behaviour of the CAN module
Due to the internal state machine of the CAN module, a specific delay has to be considered
between resetting INTPND and reading the updated value of INTID. See Application Note AP2924
" Interrupt Register behaviour of the CAN module in Siemens 16-bit Microcontrollers" on

http://www.siemens.de/semiconductor/products/ics/34/pdf/ap292401.pdf

Application Support Group, Munich

