SIEMENS

Microcontrollers
ApNote AP1608

|Zl additional file
APXXXX01.EXEavailable

In-circuit Programming of the C166 Family Flash Devices

The Siemens 16-bit Microcontroller family comprises two flash devices, the
SAB 88C166 with 32 Kbytes on chip flash memory and the C167CR-16F
with 128 Kbytes on chip flash memory

Author: K. Westerholz / Tools Group, Munich

Semiconductor Group 12.96, Rel. 60 (5.10)

SIEMENS

Y ¢ 111 - ox PP UUPPPPPRTRTT 3
2 In-circuit programming algorithimooouuiniii 3

G o (23 o - To [PSPPI 7
] = LU L PSPPSR 8
S T = £ T PP TPPP 9
SR e (o | =010 11 0o I PP 9

In-circuit Programming

of the C166 Family Flash Devices

AP1608 ApNote - Revision History

Actual Revision : Rel.60 (5.10) Previous Revison: Rel.41

Page of Page of
actual Rel. |prev. Rel.

Subjects changes since last release)

SW change in AP160860.EXE

Semiconductor Group

2 0of 10

AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

1 Apstract

The Siemens 16-bit Microcontroller family comprises two flash devices, the SAB 88C166
with 32 Kbytes on chip flash memory and the C167CR-16F with 128 Kbytes on chip flash
memory; both partitioned into 4 independent banks. The C167CR-16F can be
programmed more than 1000 times. They are suited most for applications requiring high
flexibility combined with standard hardware.

For instance, applications like motor control demand for a Flash device to be programmed
at the end of the production line in its final environment. Furthermore, prototyping and
small series are now much easier with the flash devices. To offer this flexibility, it is
necessary to enable in-circuit programming at the end of the production line or even in the
field. If that flexibility is not required, C166 Flash devices can also be preprogrammed by
means of dedicated programming boards.

This application note describes the necessary steps to be taken enabling in-circuit
programming for the C167CR-16F. The process of programming presented here is based
on the built-in boot strap loader of the C166 devices. All software including the
programming data is downloaded from a host PC into the internal RAM of the
microcontroller. Since the application requires only 1 Kbytes of internal RAM, no
assumptions about the hardware environment have to be made. The solution described
here employs a standard evaluation board . No changes to the board are necessary.

The application code is provided by our mail box Tel:+49 89 498431 and via our
distribution channels. For more detailed technical information regarding the devices
please refer to our data sheets.

Hardware requirements

Three steps are needed, firstly providing the 12V programming voltage, secondly
activating the on chip boot strap loader, and thirdly connecting the device to a host PC.

All C167 devices have a Vpp pin dedicated to the 12V programming voltage. You only
have to connect a 12V power supply to this pin. Using the Ertec EVA Board, you connect
the programming voltage with the pin E7 of the on board connector.

The second prerequisite is that the bootstrap loader mode (BSL) is enabled. The C167
enters BSL mode if pin POL.4 is sampled low at the end of a hardware reset. In this case
the built-in BSL is activated, independent of the selected bus mode. The bootstrap loader
is stored in a special Boot-ROM, not part of the 128 Kbytes Flash memory area. The Ertec
EVA Board provides a switch to activate the BSL mechanism (BSL=ON).

In order to download the application from a PC, a serial link has to be established. The
C167 already provides an asynchronous serial interface that only has to be directly
connected to COML1 of your PC. Supposing you are using an Ertec EVA Board, you can
directly connect its serial connector with the COM1 interface of your PC

2 In-circuit programming algorithm

The whole mechanism of in-circuit programming presented here relies on the BSL. By
means of the BSL the connection between your target and the host PC is established. The
number of bytes that are transmitted by means of the BSL are 32 bytes of code or data.

Semiconductor Group 3 0of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

They are stored at a fixed location (FA40h-FA5Fh) in the internal RAM. Afterwards this
code sequence is automatically executed starting at address FA40h. By means of this
initial user code sequence, a second more comprehensive loader can be loaded and
executed that is able to load larger programs. In the application presented, the second
loader is employed to download a full featured hex-loader. Then the hex-loader
downloads further applications. The very first application automatically downloaded by the
hex loader is a small shell enabling actions like status inquiries, erasing, and
programming the Flash memory. Routines needed for the applications like erasing the
Flash memory banks are downloaded on demand because of memory restrictions.

EVA -Board

Serial line

Figure 1:
Setup for in-circuit programming

Assuming you want to start a communication with your target. You firstly invoke your
server program ,flash.exe* on the host side. Then you activate the BSL mode of the
microcontroller by a hardware reset. When the BSL is active, the controller stays listening
till the PC sends a zero byte

Typing in the command ,connect”, the server establishes a connection by executing the
connection procedure [Fig.]. After the target has received the zero byte, the BSL sends
back an identification byte characteristic for each C166 derivative, see table..

Table 1:
ID-Byte overview

Chip ID-Byte
C165 B5h
80C166 55h
C167 Step AD A5h
C167 Step BA C5h
C167CR C5h

Semiconductor Group 4 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

In return, the BSL is expecting 32 Bytes of code and data. On the host side you start this
initialization sequence by the connect command that sends the zero byte, checks the
identification byte and provides the 32 Bytes user software, the second loader, the hex-
loader, and the shell.

Target: activate BSL Host (PC): invoke server

connect command

correct id byte received ?
send reload.hex

reload send load_2.hex

(load 2nd loader,
2nd_loader
(load hex loade

hex_loader
(load shell code

h
shell waiting for e)(\/oader
host command ~Scs
Stang by shellsucessfully loaded?

shell activated?

send hex.hex

hex loader ready?
send shell.hex

Figure 2:
Connection process

This initialization phase is terminated by the stand by message of the hex-loader and the
shell. Afterwards both reside in the internal RAM. The server indicates this state by
printing ,,stand by“ and prompting for new commands.

Now you can enter specific commands for instance ,erase“ and ,program“ the flash
memory. In both cases the host issues a command to the shell monitor running on the
C167. The shell decodes the command, then the application code is downloaded by the
hex loader and finally executed [Fig.]. Supposing a further command is entered, the code
will be again downloaded from the host into the internal RAM. Thus, the running system
comprises three parts, the shell interpreting user commands, the hex-loader for
downloading the code and data, and the code for the present command to be executed.

Semiconductor Group 5 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

Target: active Host (PC): server running

erase, program, status command

ma(\d send command

hex_loader

(load shell code hex loader ready?

send application.hex

application
executing

- ——
=
Q

e /5

2 /8

o/@

o 5

<

shell waiting for
host command

Q application sucessfully loaded?
Sage

<
%]

returned to shell?

Figure 3:
Processing a command

Due to the limited RAM size the previous application code will be overwritten. Below you
will find a memory map depicting the memory utilization. It shows that the hexloader code
overwrites the 2nd loader. The reload code transferred by the BSL, is replaced by the wait
code and the unlock sequence. The status, the erase, and the programming algorithm
reside in the area above the hexloader .

Semiconductor Group 6 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

FA00 T
Register Bank
FA20 T
EA4O System Stack
Reload Code Wait Code
FASF — FASA T

Unlock Code

Shell Code
FB74 T~~~ ~~~"~"~"""""- FB73-—~-~"""""""""""""""~-~-

FC64 | Status Code FC64 Fc64 |
atus Lode Erase Code ProgP Code

FDOO

2nd Loader
FD43 FD7B FD3F I

FC8F

FDDA .
I Programming Data
FDFF

Figure 4:
Memory layout

3 Hex Loader

The hex loader on the target site has the task of transferring data to the internal RAM. It
interprets the Intel hex file format. Furthermore, it distinguishes between application code
executed to program the flash memory and users’ programming data. The application
code is a means to program the device and to maintain the host target communication.
The programming data is intended to be stored in the Flash memory. According to Intels
hex file format, programming data has the record type 0. The record type 2 is reserved the
for extended address records in order to enable the addressing of more the 64 Kbytes. In
order to distinguish code from data records, we have defined the record type 4 for code.

If the hex loader detects programming data, one data record is transmitted and stored in
the data buffer provided for programming data. Afterwards the programming algorithm
places the data at the location indicated by the corresponding memory address. In
contrast, application code will be stored into the internal RAM, where it is executed then.

Semiconductor Group 7 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

4 Status

Assigned to the flash memory is the Flash Control Register (FCR) providing status
information and control flags. The status register contains 11 bits of information:

FWE Flash Write Enable Bit

FEE Flash Erase Enable Bit

FBUSY Flash Busy Bit

RPROT Flash Read Protection Activation Bit
FCVPP Flash Control Vpp Bit

VPPREV Flash Revelation Bit

CKCTL Internal Flash Timer Clock Control
WDWW Word/ Double Word Writing Bit

BE Bank Erase Select (2 bits)

FWSET Flash Writing Mode Set Bit

With the command ,status” the present configuration and the status of the Flash memory
can be inspected. The successful completion is indicated by returning to the stand by
mode of the shell. To inspect the status register, the file status.hex is downloaded into the
target. It contains the status register inspection routine, the routine to unlock the Flash
register and a wait routine. Finally, the controller transmits the content of the FCR to the
host where it is displayed.

Actually, the FCR is a virtual register mapped into the active address space of the Flash
memory while the Flash writing mode is active. In order to enable access to the FCR, the
writing mode must be entered by means of the unlock sequence:

mov Rn,#4000 ; Initialize Flash pointer
mov DPP1:POF FCR, Rn ; First pass of unlock sequence
mov [Rn], Rn ; Second pass of unlock sequence

After waiting 10us, the FCR can be retrieved by any direct access to an even address in
the active address space of the Flash memory. Writing mode is quitted again by the key
instruction

mov MEM, Rn.

MEM denotes a memory location within the Flash memory and Rn denotes an arbitrary
register.

Semiconductor Group 8 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

5 Erase

The Flash memory is partitioned into four memory banks of 48 Kbytes, 48 Kbytes, 24
Kbytes, and 8 Kbytes. They can be individually programmed and erased at least 1000
times. After the memory has been erased it contains only ones. Four commands are
provided (eraseO, erasel, erase2, and erase3) to erase specific memory banks.

The erasing algorithm starts programming by unlocking the Flash memory, then setting
the FCR register. Afterwards the memory content is deleted by setting its content to zero
to avoid that memory is damaged by overerasing. Finally, the memory is erased by the
key instruction

mov[Rn],Rn.

During erasing, ensure that register Rn is using a data page pointer that is initialized with
5. Register Rn does not need to point to the bank that is going to be erased. To check if
erasing has been successfully, the verify mode is encountered:.

cmp DATAWRL,[FLASHPOINT] ; First step of VM read
call Wait4 ; Wait 4us
cmp DATAWRL,[FLASHPOINT] ; Second step of VM read

Register DATAWRL1 is a general purpose register initialized with ones. The ONES register
provided by the C166 family, cannot be used because the compare instruction only goes
with general purpose registers. The FLASHPOINT register points to the Flash memory
location to be checked. Please keep in mind that indirect address pointers are only
possible using the registers RO to R3 when employing arithmetic, logical or compare
instruction.

Supposing the memory bank has been successfully erased, you will receive the message
»bankX successfully erased”, and the target again enters the stand-by mode of the shell. If
you instead receive the message ,ERROR ! Setzero not successfully!”, the flash memory
has been damaged so that it cannot be programmed anymore. The error message
,ERROR ! Erasing not successfully !“ indicates that memory has been successfully
programmed with zeros. However, it cannot be erased.

The time it takes to erase the flash memory is not fixed. It depends on the number of
erasing pulses required until the very last memory cell is erased. It has shown that the
erasing time varies between 1s for the smallest bank and the 11s for the largest bank.

6 Programming

Before you can start programming a specific memory bank, please ensure that the bank is
already erased. If it is not erased, you will receive an error message, telling you that the
device cannot be programmed.

The command ,program“ invokes the programming routine on the host side. Firstly, it
prompts for an Intel hex file that contains the user data to be written into the Flash
memory. Then it downloads code and data into the target. Afterwards, the flash memory is
unlocked and the programming algorithm invokes the hexloader to download the

Semiconductor Group 9 of 10 AP1608 4.97

SIEMENS In-circuit Programming

of the C166 Family Flash Devices

programming data. The host transmits the data partitioned into records of 32 bytes to the
target. At the target site the programming routine writes the data into the flash memory by
an indirect move:

mov [FLASHPOINT], DATAWR ; Programming: write data to the Flash

FLASHPOINTpoints to the destination location and the register DATAWRoONtains one data
word.

Target: active Host (PC): server running
program

el send command program
e)
o and promt for program_data.hex file

\Q

ex
\/O,_:der "
hex_loader ~d

(load shell code ot hex loader ready?

\O! send application.hex

>
2

- -
%. -
)
/

>
D
=
g /i
A
A
<

executing
programming
algorithm

s
&
&

application sucessfully loaded?

hex_loader
hex loader ready?

(load data record) ocS
V send program_data.hex
. he)(\/o
data into flash data sucessfully loaded?

invoke hex_loade
again

-

-——
ke
&

3

flash successfully programmed?

Figure 5:
Memory layout

After a data record has been programmed the verify mode is encountered. The verify
instruction sequence is the same as used to verify erasing.

To speed up the programming, the controller provides a double word programming mode
controlled by the FCR register, besides the word programming mode used above. It can
be employed if the data is aligned to even addresses by performing the above move
operation twice, without changing the destination pointer FLASHPOINT. However, the
programming speed is limited by the serial communication link. Measurements have
shown that a programming speed of 300 Bytes/s can be achieved by this approach.

Semiconductor Group 10 of 10 AP1608 4.97

