
Semiconductor Group 11.97, Rel. 02

Microcontrollers

ApNote AP1640

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

ADIS16X allows the analysis of program code for the 16-bit microcontrollers of the C16X
family. Program code in different formats can be loaded and displayed in Disassembler or
Hex-dump format. Single instructions can be input using the built-in One-Line Assembler.
Program code can be written into a Log-file in a list or assembler source format. SFR and bit
symbol operation is provided using a symbol definition file.

Richard Schmid, Microcontroller Product Definition, Siemens Munich

 : Additional file
AP164002.EXE available

Contents Page

Semiconductor Group 2 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

1 Starting of ADIS16X . 3

2 Main Menu . 4

3 Basic Function <F1> : Loading of a Data File . 5

4 Basic Function <F2> : Writing Memory Buffer Contents into a HEX- or BIN-File . . 6

5 Basic Function <F3> : Selection of a Microcontroller Type . 7

6 Basic Function <F4> : Disassemblers / One-Line Assemblers Menu 8
6.1 General Operation . 8
6.2 Input of a New Address . 9
6.3 Generation of a Log-File . 9

7 Basic Function <F5> : HEX-Dump Menu . 11
7.1 General Operation . 11
7.2 Input of a New Address . 12
7.3 Generation of a Log-File . 12

8 Basic Function <F6> : Overview on the Memory Buffer Usage 13

9 Basic Function <F7> : Selection of Options . 14

Appendix . 15
A Error and Status Messages . 15
B One-Line Assembler Formats . 16
C Definition of the Symbol Definition File . 18

AP1640 ApNote - Revision History

Actual Revision : 11.97 Rel. 02 Previous Revision : 10.97 Rel. 01 (Original Version)

Page of
actual Rev.

Page of
prev.Rel.

Subjects (changes since last release)

- - AP164002.EXE : new version of ADIS16X.EXE (V3.03) included;
operand decoding of JNB, JBC, JNB, and JNBS instructions corrected.

Semiconductor Group 3 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

1 Starting of ADIS16X

The program ADIS16X.EXE is an MS-DOS program. It can be started under MS-DOS or in an MS-
DOS window of a Windows operating system. If no parameter is added ADIS16X comes up in a 25-
line/80-columns text mode. It is also possible to initiate the program using a 43- or 50-line text mode.
This mode is selected calling the program by ADIS16X /43 .

After ADIS16X has been started the title screen is displayed. Pressing any further key will turn on
the main menu screen.

When ADIS16X is loaded, the program searches for a file called ADIS16X.SYM, which contains the
device, the special function register, and the bit symbol definitions. If this file is not present in the
directory where ADIS16X is located and started, ADIS16X will operate without any microcontroller
specific register or bit symbol. This capability of symbol definitions in an external file allows a very
flexible adaption of ADIS16X to all types of the C166 family microcontrollers with their different SFR
and bit symbols. The syntax of the symbol definition file is shown in appendix C of this ApNote.

Depending on the available main memory resources of the PC, ADIS16X allocates a memory buffer
for its operation with up to 256 KByte in portions of 64K Bytes. Therefore, the memory buffer for
ADIS16X starts at 00000H up to at maximum 3FFFFH in quantities of 64 Kbyte pages.
Important : C166 data can be only handled within this absolute memory address area.

Semiconductor Group 4 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

2 Main Menu

Figure 1 shows the main menu in 25-line mode.

Figure 1 :
Main Menu of ADIS16X

The main menu screen of ADIS16X is divided into three sections :

– The upper area of the screen (3 lines), the help area , shows the actual available basic
functions of the program and the related keys which are used to select these basic functions.

– The middle area of the screen, the display area , is used to display the contents of the
256K byte memory buffer in the Disassembler or Hex-dump menu. The number of text lines
of this area depends on the text mode, in which ADIS16X is started (16, 34, or 41 lines).

– The lower area of the screen (2 lines), the status area , is used to display status information
and error messages (see Appendix A). File names and addresses are also input in this screen
area. The right part of the status area shows the actual selected type of microcontroller, as
defined in the symbol definition file, and the state of the Log-File (closed or open).

The seven basic functions of ADIS16X can be selected from the main menu. These basic functions
are assigned to function keys F1 to F7 as follows :

<F1> Loading of a data file in different formats into the ADIS16X memory buffer
<F2> Writing ADIS16X memory buffer contents into a file using HEX- or BIN- format
<F3> Selection of a microcontroller type (and its symbols)
<F4> Starting the ADIS16X Disassembler / One-Line Assembler function
<F5> Starting the ADIS16X Hex-dump function
<F6> Display of the ADIS16X memory buffer usage (Code RAM Info)
<F7> Selection of different options

Pressing <Esc> in the main menu will terminate the ADIS16X program and return to DOS. Pressing
any other key in the main menu results in an optical (error message) and acustical warning. The
following chapters describe each of the seven main menu basic functions in detail.

Semiconductor Group 5 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

3 Basic Function <F1> : Loading of a Data File

ADIS16X provides a 256K byte memory buffer which is assigned to be used as program memory
buffer for instructions or data, which are generated by assembler and compiler programs. These
instructions and data are normally stored with absolute addresses in data files using different
formats. Figure 2 shows the types of data formats which can be loaded by ADIS16X. HEX- and
OBJ-file formats are the Intel type of format.

Figure 2 :
Data File Load Selection Window

Pressing <F1> in the main menu of ADIS16X opens the window above and requests an input for the
selection of the data file format. After the selection of one data file format, ADIS16X requests for the
input of the file name of the data file. Additionally, for the BIN-file format a memory buffer start
address is requested which defines the memory buffer address, where the binary data is placed
(with incrementing memory buffer address). The other data file formats all provide address
information whithin the data file which is used to locate the data file contents in the memory buffer.

The path of the data files names to be input must be referenced to the directory where ADIS16X is
located in either relative or absolute format. When a data file has been found and opened, ADIS16X
analyses its content and transfers the relevant data into the memory buffer.

After the loading of a data file content, the Code RAM Info function (<F6> in the main menu) gives
an overview of the memory buffer usage. Prior to loading of the memory buffer with the contents of
a data file, the memory buffer is completely written with 00H. This memory buffer initialization
feature can be switched off by an option (<F7> in the main menu).

Remarks for HEX-, OBJ-files :
HEX-files are scanned for records with record type 00H (data records) and 02H (address records).
Only code or data information which is placed in these records is processed and transferred into the
memory buffer. From OBJ-files only records with record type B9H and 05H are analysed. Symbol
informations stored in HEX- and OBJ-files are not used by ADIS16X.

Invalid data file formats and checksum errors in data files are detected and generate an error
message in the status area.

Semiconductor Group 6 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

4 Basic Function <F2> : Writing Memory Buffer Contents into a HEX- or BIN-File

This function allows to generate data files with the content of the memory buffer. It is invoked by
pressing <F2> in the main menu. After the input of the data file name to be generated, start and end
address must be input. If a data file already exists, a warning message occurs and it must be
selected whether the data to be transferred should overwrite the old information in the existing data
file or if it should be appended to an existing data file. This allows to store several memory buffer
parts in one data file.

All address values must be input as hexadecimal numbers. For generated HEX-files, an “Extended
Address Record“ (record type=02H) is preceeded and an "End-of-File" record “:00000001FF“
(record type=01H) is appended to a data block which has been written into the HEX data file.
Therefore, if multiple memory buffer blocks are written into one HEX-file, the "End-of-File" records
should be deleted manually (except the last one) by using e.g. a text editor.

Semiconductor Group 7 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

5 Basic Function <F3> : Selection of a Microcontroller Type

This function allows to select a microcontroller device with its related SFR- and bit symbols. This
function is only available, if the device with its symbols has been defined in the symbol definition file
ADIS51.SYM. In the example of figure 3 three devices have been defined.

Figure 3 :
Microcontroller Type Selection Window

After the selection of the microcontroller type the name of the microcontroller is displayed in the right
corner of the status area. Also all SFR and bit symbols, which are defined for the selected type of
MCU in the symbol definition file ADIS51.SYM, are activated.

Semiconductor Group 8 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

6 Basic Function <F4> : Disassemblers / One-Line Assemblers Menu

6.1 General Operation

After pressing <F4> in the main menu and after the input of a start address, the disassembler
window with its related menu is opened. This function is the main part of the ADIS16X program. It
allows to display the contents of the memory buffer as C166 instruction mnemonics and to alter or
enter single instructions by using the one-line assembler capability.

When entering the disassembler menu, ADIS16X begins a linear disassembling of 2000
instructions located in the memory buffer starting from the start address. The first instructions are
then output in the display area. The instruction, which is located at the start address, appears in a
(grey) highlighted scrollbar with the cursor placed at the first character of the instruction. The
highlighted instruction can be modified or the scrollbar can be moved using the cursor keys :

<Cursor Up> moving scrollbar one instruction back (optional scroll screen)
<Cursor Down> moving scrollbar one instruction forward (optional scroll screen)
<Page Up> moving scrollbar one screen page back
<Page Down> moving scrollbar one screen page forward

It is not possible to move the scrollbar in the screen area directly to an address which is less than
the start address. For this operation a new start address must be defined (using <F9>). Further, the
scrollbar cannot be moved behind the last (of the 2000) instructions which have been disassembled.

Figure 4 shows an example of the disassembler menu.

Figure 4 :
Disassembler/One-Line Assembler Menu of ADIS16X

Semiconductor Group 9 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

The one-line assembler capability accepts opcodes and operands as input of instructions as they
are defined in Appendix B . For the one-line assembler byte and word values for an instruction can
be input either in decimal or hexadecimal notation, but they are always output as hexadecimal
values.

If SFRs and bit symbols are defined for the active microcontroller device (see chapter 5), the
disassembler displays SFR addresses and bit addresses with its symbol. The one-line assembler
also accepts symbol names as an input for an operands. SFR and bit symbol output/input can be
switched off by an option (see chapter 8).

After an instruction has been modified or input by using the cursor left/right keys and the key,
it is assembled pressing the <Return> key. If the instruction has a correct format, its code bytes are
written into the memory buffer location where the scrollbar is located. After this memory buffer
update, the instructions which follow the actually assembled instruction are re-disassembled.
Therefore, it may occur that the instruction flow is changed for the instructions, which are located
directly behind the actually assembled instruction (e.g. replacing a 4-byte instruction by a 2-byte
instruction).

The input of an odd start address for memory buffer disassembling will be corrected with a
corresponding status message to the next even memory buffer address. Instructions, which follow
ATOMIC and EXT* instructions, are assigned to the extended SFR area. Such instructions are
marked with a “+“ in the rightmost column of the screen area.

Two more function keys are available in the disassembler menu :

<F9> Input and definition of a new start address for disassembling
<F10> Open/append/close a Log-file
<Esc> Back to the Main Menu

6.2 Input of a New Address

Pressing the <F9> key in the disassembler menu allows to enter a new start address for the
memory buffer disassembling procedure. ADIS16X again begins the linear disassembling of 2000
instructions located in the memory buffer starting from the new entered start address. The
instruction, which is located at the start address, appears in the highlighted scrollbar.

This capability of defining a new start address is required when large areas of the memory buffer
must be disassembled or if the destination address of a jump instruction, which should be
disassembled, is e.g. outside the 2000 actually disassembled instruction area of the memory buffer.

6.3 Generation of a Log-File

The Log-file generation capability in the disassembler menu allows to write disassembler data from
the memory buffer into an ASCII file. The disassembler data is written in the Log-file in a listing
format as shown in the Log-file example 1 on the next page. The data in the first part of the Log-file
example 1 has been generated with DPPi and symbols decoding enabled. For the second part DPPi
and symbols decoding has been disabled.

Semiconductor Group 10 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

Log-File Example 1 : Disassembler Output

 ==
 ADIS16X V3.0 - LOG-File
 ==
 ;
 ; Log-File output with DPPi decoding and symbols decoding enabled (C167)
 ;
 08000 : A5 5A A5 A5 DISWDT
 08004 : E6 0A 00 FA MOV STKOV,#0FA00H
 08008 : E6 0B 40 FA MOV STKUN,#0FA40H
 0800C : E6 09 3E FA MOV SP,#0FA3EH
 08010 : E6 08 00 FD MOV CP,#0FD00H
 08014 : E6 03 03 00 MOV DPP3,#0003H
 08018 : E6 02 02 00 MOV DPP2,#0002H
 0801C : E6 01 01 00 MOV DPP1,#0001H
 08020 : E6 00 03 00 MOV DPP0,#0003H
 08024 : 9E 86 BCLR ALECTL0
 08026 : CF E2 BSET P3.12
 08028 : CF E3 BSET DP3.12
 0802A : DF E2 BSET P3.13
 0802C : DF E3 BSET DP3.13
 0802E : 0E 10 BCLR 10H.0
 08030 : 1F 10 BSET 10H.1
 08032 : FA 00 36 80 JMPS 0,8036H
 08036 : B5 4A B5 B5 EINIT
 0803A : F6 F0 48 FD MOV DPP3:3D48H,R0
 0803E : F2 5E 48 FD MOV S1BG,DPP3:3D48H
 ;
 ; Log-File output with DPPi decoding and symbols decoding disabled (C167)
 ;
 08000 : A5 5A A5 A5 DISWDT
 08004 : E6 0A 00 FA MOV 0AH,#0FA00H
 08008 : E6 0B 40 FA MOV 0BH,#0FA40H
 0800C : E6 09 3E FA MOV 09H,#0FA3EH
 08010 : E6 08 00 FD MOV 08H,#0FD00H
 08014 : E6 03 03 00 MOV 03H,#0003H
 08018 : E6 02 02 00 MOV 02H,#0002H
 0801C : E6 01 01 00 MOV 01H,#0001H
 08020 : E6 00 03 00 MOV 00H,#0003H
 08024 : 9E 86 BCLR 86H.9
 08026 : CF E2 BSET 0E2H.12
 08028 : CF E3 BSET 0E3H.12
 0802A : DF E2 BSET 0E2H.13
 0802C : DF E3 BSET 0E3H.13
 0802E : 0E 10 BCLR 10H.0
 08030 : 1F 10 BSET 10H.1
 08032 : FA 00 36 80 JMPS 0,8036H
 08036 : B5 4A B5 B5 EINIT
 0803A : F6 F0 48 FD MOV 0FD48H,R0
 0803E : F2 5E 48 FD MOV S1BG,0FD48H

If data shall be written into a Log-file by pressing <F10> in the Hex-dump menu and a Log-file is not
open (status message "LOG-File : closed"), a file name is requested to be input in the status area.
As default, ADIS16X.LOG is proposed. If a Log-file is already open (status message "LOG-File :
open"), it must be selected whether the actual Log-file shall be closed or whether the data should be
appended to the end of the actual Log-file.

Semiconductor Group 11 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

7 Basic Function <F5> : HEX-Dump Menu

7.1 General Operation

Pressing <F5> in the main menu activates the Hex-dump function of ADIS16X and requests to input
a memory buffer start address (hexadecimal address value followed by a <Return>) . Beginning at
this address, the contents of the memory buffer are displayed in hexadecimal and ASCII notation
(16 bytes in each row). Depending on the cursor position, the highlighted byte can be modified by
entering a new hexadecimal value or an ASCII character. The <Tab> key is used to switch the
cursor of the highlighted byte from hexadecimal display to ASCII display and vice versa. The
highlighted byte can be moved using the cursor keys. The address of the highlighted byte is
displayed additionally in the status area of the screen.

After activation of the Hex-dump function, the Hex-dump menu is entered. The help area of the
screen displays the functions which are available now :

<Cursor Down> Decrement address of highlighted byte by 16 (optional scroll screen)
<Cursor Up> Increment address of highlighted byte by 16 (optional scroll screen)
<Cursor Right> Increment address of highlighted byte by one (optional scroll screen)
<Cursor Left> Decrement address of highlighted byte by one (optional scroll screen)
<Page Up> Scroll Hex-dump screen by one screen page back
<Page Down> Scroll Hex-dump screen by one screen page forward
<F9> Input of a new address for the Hex-dump function
<F10> Open/append/close a Log-file
<Tab> Switch cursor of highlighted byte from hexadecimal to ASCII input
<Esc> Back to the Main Menu

Figure 5 shows an example of a Hex-dump screen

Figure 5 :
Hex-Dump Function of ADIS16X

Semiconductor Group 12 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

The Hex-dump function is left by pressing <Esc> . The generation of a Log-file is described in
chapter 7.3.

Note :Generally, the Hex-dump function can be also used for binary analysis/modifcation of a file
with a size of max. 256 Kbyte. For using this feature the file should be loaded as BIN file into
the memory buffer at address 00000H. After the load operation start and end address can be
detected manually and bytes can be modified. Finally the data can be written again from the
detected start to end address into a BIN file.

7.2 Input of a New Address

Pressing the <F9> key in the Hex-dump menu allows to enter a new start address for the Hex-dump
output. Thereafter, ADIS16X displays the data bytes located in the memory buffer starting with the
data byte of the new entered start address in the left upper corner of the screen area.

7.3 Generation of a Log-File

The Log-file generation capability in the Hex-dump menu allows to write data from the memory
buffer in hex notation into an ASCII file. The format of the hex data includes memory buffer
addresses and hex data with 16 bytes in one row, as hexadecimal and ASCII characters.

The Log-file example 2 below shows the Hex-dump log file output of the data as shown in figure 5 .

Log-File Example 2 : Hex-Dump Output

 ==
 ADIS16X V3.0 - LOG-File
 ==

 08000: A5 5A A5 A5 E6 0A 00 FA E6 0B 40 FA E6 09 3E FA ¥Z¥¥æ..úæ.@úæ.>ú
 08010: E6 08 00 FD E6 03 03 00 E6 02 02 00 E6 01 01 00 æ..ýæ...æ...æ...
 08020: E6 00 03 00 9E 86 CF E2 CF E3 DF E2 DF E3 0E 10 æ...•†ÏâÏãßâßã..
 08030: 1F 10 FA 00 36 80 B5 4A B5 B5 CA 00 58 80 CA 00 ..ú.6_µJµµÊ.X_Ê.
 08040: 8A 80 CA 00 AA 80 CA 00 AA 80 E6 F0 AA 00 CA 00 Š_Ê.ª_Ê.ª_æðª.Ê.
 08050: 9C 80 EA 00 EE 80 FB 88 E6 24 00 00 CC 00 8A E2 œ_ê.î_ûˆæ$..Ì.Šâ
 08060: FD 90 6F A4 CC 00 9A E2 FD 90 6E A4 F2 F0 48 FE ý_o¤Ì.šâý_n¤òðHþ
 08070: E6 F1 48 00 F6 F0 0E FE 5B 11 F2 F0 0E FE 28 01 æñH.öð.þ[.òð.þ(.
 08080: F6 F0 48 FD E6 24 00 00 CB 00 8F E2 8F E3 F2 5E öðHýæ$..Ë._â_ãò^
 08090: 48 FD E6 DC 11 80 7F B9 CC 00 CB 00 9A B9 FE 70 HýæÜ._-¹Ì.Ë.š¹þp
 080A0: 7E B9 CC 00 F6 F0 B8 FE CB 00 9A BA FE 70 F2 F0 ~¹Ì.öð¸þË.šºþpòð
 080B0: BA FE 7E BA CB 00 E6 BA 04 00 7E BA 6F BA CB 00 ºþ~ºË.æº..~ºoºË.
 080C0: 4D 4F 4E 31 36 36 20 56 31 2E 32 37 20 28 63 29 MON166 V1.27 (c)
 080D0: 20 31 39 39 30 20 53 69 65 6D 65 6E 73 20 41 47 1990 Siemens AG
 080E0: 20 2F 20 65 72 74 65 63 20 47 6D 62 48 00 E0 00 / ertec GmbH.à.
 080F0: EC F0 EC F0 EC F0 C6 08 00 FD C6 03 03 00 C6 02 ìðìðìðÆ..ýÆ...Æ.

If data shall be written into a Log-file by pressing <F10> in the Hex-dump menu and a Log-file is not
open (status message "LOG-File : closed"), a file name is requested to be input in the status area.
As default, ADIS16X.LOG is porposed. If a Log-file is already open (status message "LOG-File :
open"), it must be selected whether the actual Log-file shall be closed or whether the data should be
appended to the end of the actual Log-file.

Semiconductor Group 13 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

8 Basic Function <F6> : Overview on the Memory Buffer Usage

This function can be used to get an information about the usage of the memory buffer after a data
file has been loaded into the memory buffer (basic function <F1> “Loading of a Data File“). This
function is useful if e.g. the code locations of a data file are unknown. Each block character in the
memory buffer usage window represents an address area of 1K byte (see figure 6). A yellow (or
bold) block character indicates that the 1k block of the memory buffer has been loaded with data. A
gray block character indicates that the address area of 1K byte has not been loaded with data.

The memory buffer usage window is again closed when any key is pressed.

Figure 6 :
Memory Buffer Usage Window

Semiconductor Group 14 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

9 Basic Function <F7> : Selection of Options

With this function three options can be selected. Pressing the keys <1> to <3> always toggles the
related option. The displayed value is always active (see figure 7). Pressing another key closes the
options window again.

Figure 7 :
Options Window

The first option can be used to enable/disable SFR- and bit-symbols in disassembler outputs and
one-line ssembler inputs. The symbols must be defined in an external symbol definition file
(ADIS16X.SYM).

The second option allows to switch on/off the DPPi decoding of instructions when they are displayed
in the disassembler menu or written in a Log-file. An instruction “MOV DPP1,#0001H“ is
disassembled as “MOV 01H,#0001H“ when option 2 is disabled.

If the third option is enabled, every load of a data file is preceeded by a memory buffer clear
operation (256K memory buffer is loaded with 00H). This memory buffer clear operation can be
disabled.

Semiconductor Group 15 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

Appendix

A Error and Status Messages

Error-/Status Message Cause

File access error Input of an invalid file name or file does not exist

Checksum error During loading of a data file a checksum error has been detected. The
data file load operation is aborted.

No absolute code/data has been loaded During the reading of a data file no absolute located code/data
information has been detected and loaded into the memory buffer.
Probably the data file has a wrong format.

Invalid OBJ-file format or
Invalid IEEE-file format

During loading of a OBJ or IEEE data file a wrong file format has been
detected. The load operation has been aborted.

Code memory is not available at this
address

During loading of a data file a non existing memory buffer address has
been requested. The load operation has been aborted.

Invalid input The character which has been input is invald and was not accepted.

Invalid address Invalid address (only hexadecimal values allowed).

Invalid instruction An invalid instruction has been input; the one-line assembler cannot
disassemble the instruction (instruction format see Appendix B).

Display buffer exceeded For further disassembling of the memory buffer a new start address
must be input (using <F9> in the disassembler menu. Beginning with
the start address, at maximum 2000 instructions can be displayed in
one run.

Code memory limit reached During the disassemble or hex dump function the upper limit of the
memory buffer has been reached.

End of code memory - input lower
address

In disassembler or hex dump function a new lower start address must
be input. With the start address, which has been input, the display
area cannot be filled completely with data.

Disassembler start address reached The disassembler has reached the start address from which 2000
instruction have been disassembled (with incrementing address).

Start address is greater than end
address

For Log-file generation the start address is greater than the end
address.

xxx -File name is loaded Data file name of type xxx is opened, analysed, and absolutely
located code/data is loaded into the memory buffer.

File name is created The content of the memory buffer is transferred into a data file (Hex-
or BIN-format) with the filename name.

Log-File is created Data is currently transferred into a Log-file.

Odd address - corrected to next even
ddress

The start address for the disassemble function is an odd address and
corrected to the next (higher) even address.

Symbol definition file: not available or
invalid format

During the loading of ADIS16X no symbol definition file has been
found or the format of an existing symbol definition file is wrong.

MCU selection is not available - no
MCU-type defined

No MCU types defined. A symbol definition file has not been loaded.

File exists ! Overwrite/Append/Cancel ? A file (data or Log-file) to be written already exyists or is open. The file
can be closed, overwritten, appended or the action can be cancelled.

Semiconductor Group 16 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

B One-Line Assembler Formats

Opcodes Operands

ADD, ADDC;
SUB, SUBC,
AND, OR,
XOR, CMP

Rw,Rw
Rw,[Rwi]
Rw,[Rwi+]
Rw,#data3
reg,#data16
reg,mem
mem,reg (not for CMP)

ADDB, ADDCB,
SUBB, SUBCB,
ANDB, ORB,
’XORB, CMPB

Rb,Rb
Rb,[Rwi]
Rb,[Rwi+]
Rb,#data3
reg,#data8
reg,mem
mem,reg (not for CMPB)

MUL, MULU
PRIOR

Rw,Rw

CPLB, NEGB Rb

BCLR, BSET bitaddr

BCLR, BSET
BMOV, BMOVN,
BAND, BCMP,
BOR, BXOR

bitaddr,bitaddr

BFLDL, BFLDH bitoff,#mask8, #data8

CMPD1, CMPD2,
CMPI1, CMPI2

Rw,#data4
Rw,#data16
Rw,mem

SHL,SHR,ROL,
ROR, ASHR

Rw,Rw
Rw,#data4

MOV Rw,Rw
Rw,#data4
Rw,[Rw]
Rw,[Rw+]
Rw,[Rw+#data16]
[Rw],Rw
[Rw],[Rw]
[Rw],[Rw+]
[Rw+],[Rw]
[-Rw],Rw
[Rw+#data16],Rw
[Rw],mem
mem,[Rw]
reg,#data16
reg,mem
mem,reg

Opcodes Operands

MOVB Rb,Rb
Rb,#data4
Rb,[Rw]
Rb,[Rw+]
Rb,[Rw+#data16]
[Rw],Rb
[Rw],[Rw]
[Rw],[Rw+]
[Rw+],[Rw]
[-Rw],Rb
[Rw+#data16],Rb
[Rw],mem
mem,[Rw]
reg,#data8
reg,mem
mem,reg

MOVBS, MOVBZ Rb,Rb
reg,mem
mem,reg

JMPA, CALLA cc,caddr

JMPI, CALLI cc,[Rw]

JMPS, CALLS seg,caddr

JMPR cc,rel

CALLR rel

TRAP #trap7

PCALL reg,caddr

JB, JBC,
JNB, JNBS

bitaddr,rel

POP, PUSH,
RETP

reg

SCXT reg,#data16
reg,mem

RET, RETS,
RETI, SRST,
IDLE, PWRDN,
SRVWDT,EINIT,
DISWDT, NOP

no operands

ATOMIC 1)
EXTR 1)

#data2

EXTP 1)
EXTPR 1)

Rw,#data2
pag,#data2

EXTS 1)
EXTSR 1)

Rw,#data2
segm,#data2

1) These instructions are not available for the C166

Semiconductor Group 17 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

The operands shown in the table on the previous page are abbreviations for the following inputs :

Rw R0-R15
Rwi R0-R3
Rb RL0-RH7
data2 1-4 or 1H-4H
data3 0-7 or 0H-7H
data4 0-15 or 00H-0FH
trap7 0-127 or 00H-7FH
data8,mask8 0-255 or 00H-0FFH
data12 0-4095 or 000H-7FFH
data16 0-65535 or 0000H-0FFFFH
SFR symbol of a special function registers (SFR)
SFRb symbol of a bitadressable SFR
SFB symbol of a bitadressable Bits
SFRb.x bit x of a bitadressable SFR (x=0-15)
data8.x bit x of a bitadressable SFR witrh the address data8 (x=0-15)
Rw.x bit x of the registers R0-R15 (x,x=0-15)
cc symbol of a condition codes (z.B. CC_EQ)
caddr absolute jump address : 0-65535 or 0000H-0FFFFH
rel relative jump address : 0-65535 or 0000H-0FFFFH
pag 10-bit page number : 0-1023 or 00H-3FFH
seg absolute segment address : 0-3 or 0H-3H
segm absolute segment address : 0-255 or 00H-0FFH
DPPi data pointer DPP0-DPP3 (i=0-3)

The following operands are abbreviations for several inputs shown above :

reg = Rw (for word instructions) or
Rb (for byte instructions) or
SFR or
data8

mem = SFR or
data16 or
DPPi:data16

bitoff = Rw or
SFRb or
data8

bitaddr = data12 or
SFB or
SFRb.x or
data8.x or
Rw.x

Generally, numbers can be input as decimal or hexadecimal values. For hexadecimal values the
standard convention is valid : a “0“ must preceed the value if the hexadecimal value begins with a
letter (“A“ - “F“); the hexadecimal value ends with a “H“.

Inputs for the assembler are not case sensitive.

Semiconductor Group 18 of 18 AP1640 11.97

ADIS16X - Disassembler with One-Line Assembler
for the C16X 16-Bit Microcontroller Family

C Definition of the Symbol Definition File
;==
; Symbol Definition File for ADIS16X V3.0 - Rules
;==
;
; The symbol definition file for the ADIS16X V3.0 Disassembler allows to
; define symbols for SFR's and bits of the SFR's for up to 15 different
; 80C16X compatible microcontrollers. Such a symbol definition file is
; build up according the following rules :
;
; 1. Comment lines have a ";" in the first row of a line. All following
; characters in this line are ignored.
;
; 2. Empty lines (with 0DH, 0AH) can be inserted everywhere.
;
; 3. The definition file has 4 sections. Each section is validated by
; a keyword. The keywords of these sections are :
; Keyword "[MCU]" --> MCU-Section: defines the names of the MCUs
; Keyword "[SFR]" --> SFR-Section: defines the names of the Special
; Function Registers
; Keyword "[ESFR]"--> ESFR-Section: defines the names of the Extended
; Special Function Registers
; Keyword "[SFB]" --> SFB-Section: defines the names of the bits of the
; Special Function Registers.
; The keywords must be placed in the first row of a line.
;
; 4. Definitions in the MCU-Section :
; "xxxxxxx hhhh" : "xxxxxxx" starts in the first row of a column and
; is the (short-)name of the microcontroller;
; (max. 7 ASCII characters)
; "hhhh" is a 4-digit hexword, coded with a "1" in one
; of the 15 bit positions, starting with bit position
; 0; this hexword is separated from the name with ex-
; actly one blank character;
; The lines in the MCU-Section shall be ordered by ascending bit
; positions of "hhhh". A "1" in the highest bit position indicates that
; the MCU is using ESFR register.
;
; 5. Definitions in the SFR-/ESFR-/SFB-Sections :
; Lines of the SFR-/ESFR-Sections have exactly 3 parts, separated each
; by one blank character.
; "aa xxxxxxxx hhhh" :"aa" is a 2-digit hexbyte value, which defines
; the 8-bit address of a SFR or ESFR and starts in
; the first row of a column;
; "xxxxxxxx" is the name of the SFR/ESFR with the
; address "aa"; (max. 8 ASCII characters);
; "hhhh" is a 4-digit hexword; a "1" in a dedicated
; bit position defines, that the symbol 'xxxxxxx'
; is valid for the MCU, which has also a "1" de-
; fined at the same bit position in the MCU-Section
;
; 6. Definitions in SFB-Sections :
; Lines of this section are build up in a similar way as in the SFR-/
; ESFR-Section. The difference is that the bitaddress is decoded in a
; 16-bit value.
; "aabb xxxxxxx hhhh" : "aabb" is a 4-digit hexbyte value, which con-
; tains the bit position (aa) and the 8-bit
; address bb of the bitaddressable SFR-/ESFR.
; "aabb" starts in the first row of a column.
; "xxxxxxx" is the name of the bit symbol
; (8 ASCII characters);
; "hhhh" is a 4-digit hexword; a "1" in a dedi-
; cated bit position defines, that the symbol
; 'xxxxxxx' is valid for the MCU, which has also
; a "1" defined at the same bit position in the
; MCU-Section
;==
;

Note : The file AP164001.EXE includes an example for a symbol definition file.

