
AN07-00202-3E

F2MC-16FX Family
16-BIT MICROCONTROLLER

MB96F356

bits pot white

CAN-LIN board

User’s Manual

 1

AN07-00202-3E

Revision History

Date Revision

November 13,2008 Revision 1.0: Initial release

May 13, 2009 Revision 1.1 TSUZUKI DENSAN’s Logo mark was changed.

April 23, 2010 Revision 1.2

-Change in installation procedure and execution procedure by Euroscope

upgrade.

-The description of the PC specifications in Table 1-1 is corrected.

-Change in company name of FUJITSU MICROELECTORONICS

 [New]FUJITSU SEMICONDUCTOR LIMITED

 (left blank)

 2

AN07-00202-3E

Note

- The contents of this document are subject to change without notice. Customers are advised to consult

with FUJITSU sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document

are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu

semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based

on such information. When you develop equipment incorporating the device based on such information,

you must assume any responsibility arising out of such use of the information. Fujitsu assumes no

liability for any damages whatsoever arising out of the use of the information.

- Any information in this document, including descriptions of function and schematic diagrams, shall not

be construed as license of the use or exercise of any intellectual property right, such as patent right or

copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of

any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no

liability for any infringement of the intellectual property rights or other rights of third parties which

would result from the use of information contained herein.

- The products described in this document are designed, developed and manufactured as contemplated

for general use, including without limitation, ordinary industrial use, general office use, personal use,

and household use, but are not designed, developed and manufactured as contemplated (1) for use

accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious

effect to the public, and could lead directly to death, personal injury, severe physical damage or other

loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass

transport control, medical life support system, missile launch control in weapon system), or (2) for use

requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages

arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, fire,

damage or loss from such failures by incorporating safety design measures into your facility and

equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal

operating conditions.

- If any products described in this document represent goods or technologies subject to certain

restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior

authorization by Japanese government will be required for export of those products from Japan.

- The company names and brand names herein are the trademarks or registered trademarks of their

respective owners.

Copyright© 2010 FUJITSU SEMICONDUCTOR LIMITED all rights reserved

 3

AN07-00202-3E

Table of Contents

Revision History ...2

Introduction...12

Contact ..13

Suppliers of the parts/materials...14

1 Setting up the starter kit ..15

1.1 Setting up the PC ..23

1.1.1 Downloading the software ..24

1.1.2 Installing the USB driver ..24

1.1.3 Installing the integrated development environment SOFTUNE (bits pot white

dedicated version) ...28

1.1.4 Installing PC Writer (bits pot white dedicated version) ..34

1.1.5 Installing EUROScope (evaluation version) ...37

1.1.6 Configuring the board and connecting it to the PC...44

2 Running the program ..46

2.1 Executing in single chip mode ..47

2.1.1 Building a project..47

2.1.2 Writing the program into the microcontroller ...51

2.2 Debugging by using Monitor Debugger ...55

2.2.1 Activating and configuring SOFTUNE ..56

2.2.2 Changing the source file to activate with EUROScope ..58

2.2.3 Writing the program into the microcontroller ...61

2.2.4 Activating and configuring EUROScope..65

2.3 Exiting EUROScope ...72

2.4 Exiting SOFTUNE..74

3 Operation of the sample program..76

3.1 bits pot white single-unit operation...76

3.2 CAN communication operation (CAN communication operation with the bits pot red)....78

3.3 LIN communication operation (LIN communication operation with the bits pot yellow) .80

4 Try to implement single-unit operation...82

4.1 Overview of single-unit operation ..82

4.1.1 Controlling the SW inputs to light up the LEDs ...82

4.1.2 Changing the buzzer sound using the volume SW..84

4.1.3 7SEG display by temperature sensor operation ..86

4.1.4 Sample Programs ..88

 4

AN07-00202-3E

5 Try to use CAN communication ...94

5.1 What is CAN?...94

5.2 CAN specifications ...96

5.2.1 CAN frame configurations..96

5.2.2 Arbitration...100

5.2.3 Error management...102

5.3 Using the microcontroller to perform CAN communication ..104

5.4 Understanding and running the program for CAN communication..................................109

5.4.1 CAN communication configuration..109

5.4.2 Sample program sequence ..113

6 Try to use LIN communication ...122

6.1 What is LIN?...122

6.2 LIN specifications...125

6.2.1 Lin frame configuration ..125

6.3 LIN communication flow..128

6.4 Communication between master and slave if an error occurs...130

6.5 LIN communication by using the microcontroller..131

6.6 Understanding and running the program for LIN communication....................................134

6.6.1 LIN communication configuration..134

6.6.2 Sample program sequence ..138

7 Appendix...155

7.1 Sample program folder/file configuration...155

 5

AN07-00202-3E

List of Figures

Figure 1-1 External board view..16

Figure 1-2 System connection diagram ...19

Figure 1-3 System connection diagram (when performing CAN communication or LIN

communication) ..20

Figure 1-4 Downloading the USB driver...24

Figure 1-5 Installing FT232R USB UART ..25

Figure 1-6 Selecting the search locations ..25

Figure 1-7 Completing the USB Serial Converter ..26

Figure 1-8 Installing USB Serial Poｒｔ...26

Figure 1-9 Selecting the search locations ..27

Figure 1-10 Installing USB Serial Poｒｔ ...27

Figure 1-11 Installer ...28

Figure 1-12 SOFTUNE setup confirmation ...28

Figure 1-13 Starting SOFTUNE setup ..29

Figure 1-14 Caution on SOFTUNE setup..29

Figure 1-15 SOFTUNE setup/License agreement ..30

Figure 1-16 SOFTUNE setup/Version information...30

Figure 1-17 SOFTUNE setup/Selecting the destination of installation..................................31

Figure 1-18 SOFTUNE setup/Selecting the components...31

Figure 1-19 SOFTUNE setup/Confirming the installation settings.......................................32

Figure 1-20 SOFTUNE setup/Status...32

Figure 1-21 SOFTUNE setup/Completion ..33

Figure 1-22 PC Writer/Installation dialog..34

Figure 1-23 PC Writer/Setup type ..35

Figure 1-24 PC Writer/Ready to install ...35

Figure 1-25 Completing the PC Writer installation...36

Figure 1-26 EUROScope installation dialog..37

Figure 1-27 EUROScope/License agreement ..37

Figure 1-28 EUROScope/Install path ...38

Figure 1-29 EUROScope/Selecting the architecture ...38

Figure 1-30 EUROScope/Selecting the setup components ..39

Figure 1-31 EUROScope/Confirming the setup information ...39

Figure 1-32 EUROScope/Executing setup ..40

Figure 1-33 EUROScope/Setup complete ...40

 6

AN07-00202-3E

Figure 1-34 EUROScope/License information screen ..41

Figure 1-35 EUROScope/Information input screen ..42

Figure 1-36 Mode switch ..44

Figure 1-37 Connection between the PC and the board...45

Figure 2-1 Activating SOFTUNE...47

Figure 2-2 Opening a workspace..48

Figure 2-3 Selecting a workspace...48

Figure 2-4 Building a project...49

Figure 2-5 Completing the build ..50

Figure 2-6 Opening the file to write ...51

Figure 2-7 Selecting the file to write ..52

Figure 2-8 Selecting the COM port to be used for writing...53

Figure 2-9 Checking the COM port ..53

Figure 2-10 Writing the program..54

Figure 2-11 Completing the program writing...54

Figure 2-12 Activating SOFTUNE ...56

Figure 2-13 Opening a workspace..57

Figure 2-14 Selecting a workspace ...57

Figure 2-15 Opening the ROM_cfg_block.c file ..58

Figure 2-16 ROM_cfg_block.c file ..59

Figure 2-17 Building the project ..60

Figure 2-18 Opening the file to write..61

Figure 2-19 Selecting the file to write...62

Figure 2-20 Selecting the COM port to be used for writing ...63

Figure 2-21 Checking the COM port ..63

Figure 2-22 Writing the program..64

Figure 2-23 Completing the program writing ..64

Figure 2-24 Opening a file ..65

Figure 2-25 Selecting the abs file ...66

Figure 2-26 Board connection setting menu ..66

Figure 2-27 Board connection setting ...67

Figure 2-28 Board connection settings..67

Figure 2-29 Board connection settings complete..68

Figure 2-30 Opening a file ..68

Figure 2-31 Output message ..68

Figure 2-32 Debug screen ...69

 7

AN07-00202-3E

Figure 2-33 Debug execution button ..69

Figure 2-34 Initializing debug execution...70

Figure 2-35 Beginning of the program..70

Figure 2-36 Starting debug execution ...71

Figure 2-37 Stopping debug execution..71

Figure 2-38 Ending the execution program ...72

Figure 2-39 Exiting EUROScope ...72

Figure 2-40 Output message ..72

Figure 2-41 Configuration save ...73

Figure 2-42 Closing a workspace ...74

Figure 2-43 Saving a workspace ..74

Figure 2-44 Exiting SOFTUNE ...75

Figure 3-1 Controls and operations during single-unit operation..76

Figure 3-2 CAN communication operation/Controls and mechanicals..................................78

Figure 3-3 LIN communication operation/Controls and mechanicals80

Figure 4-1 Switches when the board is in single-unit operation ...82

Figure 4-2 Connection configuration between SW3 and the microcontroller pins (schematic

diagram) ..83

Figure 4-3 Volume SW when the board is in single-chip operation84

Figure 4-4 Variable resistor ...85

Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic

diagram) ..85

Figure 4-6 Sound produced by the external-drive buzzer (Schematic diagram)86

Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram)86

Figure 4-8 Flowchart of main routine ...88

Figure 4-9 Flowchart of A/D conversion processing of the volume SW and temperature sensor89

Figure 4-10 Flowchart of SW3 operation ..90

Figure 4-11 Flowchart of SW5 operation ..90

Figure 4-12 main routine program (MAIN.C)..91

Figure 4-13 A/D conversion program for volume SW and temperature sensor operation

(ADC.C) ..92

Figure 4-14 Program for SW3 operation (Ext_int.c)...93

Figure 4-15 Program for SW5 operation (Ext_int.c)...93

CAN stands for Controller Area Network, which is an on-board LAN specification proposed

by Bosch in Germany. It is the most popular on-board control LAN and used in various

parts of a vehicle as shown in “Figure 5-1 Example of on-board CAN application”........94

 8

AN07-00202-3E

Figure 5-2 Example of on-board CAN application ...94

Figure 5-3 CAN bus signal levels...95

Figure 5-4 CAN frame configurations ..97

Figure 5-5 Operation of the arbitration ... 100

Figure 5-6 Example of arbitration among nodes .. 101

Figure 5-7 CAN status transition.. 103

Figure 5-8 CAN circuit ... 104

Figure 5-9 Initializing CAN .. 108

Figure 5-10 CAN communication flowchart.. 113

Figure 5-11 SW3 (external interrupt 0) flowchart... 114

Figure 5-12 SW5 (external interrupt 2) flowchart .. 114

Figure 5-13 the reload timer interrupt flowchart .. 115

Figure 5-14 the A/D converter interrupt flowchart ... 115

Figure 5-15 the CAN interrupt flowchart .. 116

Figure 6-1 Example of vehicle LIN applications.. 123

Figure 6-2 Main LIN network configuration ... 124

Figure 6-3 LIN communication flow .. 126

Figure 6-4 LIN frame configuration ... 126

Figure 6-6-5 Main LIN network configuration .. 129

Figure 6-6-6 Example of communication sequence between the master and slaves during

normal communication .. 129

Figure 6-7 LIN circuit... 131

Figure 6-8 Entire LIN communication control register ... 132

Figure 6-9 LIN communication flowchart (main routine).. 138

Figure 6-10 LIN communication flowchart (interrupt routine: USART receive interrupt)..... 139

Figure 6-11 LIN communication flowchart (data processing by ID)................................... 140

Figure 6-12 LIN bus initial settings .. 141

Figure 6-13 ID registration – Lindbmaster.h.. 141

Figure 6-14 Send and receive response registration – Lindbmsg.h 142

Figure 6-15 Points where the processing of each interrupt is performed 142

Figure 6-16 Synch break data setting.. 143

Figure 6-17 Synch break interrupt control... 143

Figure 6-18 Processing to determine whether synch break was received............................. 145

Figure 6-19 Synch field interrupt control .. 146

Figure 6-20 Synch field interrupt control .. 146

Figure 6-21 Synch field receive determination processing .. 147

 9

AN07-00202-3E

Figure 6-22 UART send start processing... 147

Figure 6-23 ID receive determination processing ... 148

Figure 6-24 Timeout detection processing... 149

Figure 6-25 DATA send processing .. 150

Figure 6-26 DATA receive processing .. 151

Figure 6-27 Submain processing 1 ... 153

Figure 6-28 Submain processing 2 ... 154

 10

AN07-00202-3E

List of Tables

Table 1-1 Component list ..15

Table 1-2 List of board parts ...18

Table 1-3 MB96F356 pin assignment ...21

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals77

Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals..........79

Table 3-3 LIN communication operation/Descriptions of the controls and mechanicals81

Table 5-1 Data frame structure..97

Table 5-2 Error frame structure...99

Table 5-3 Overload frame structure ..99

Table 5-6 CAN register list 1 ..105

Table 5-7 CAN register list 2 ..106

Table 5-8 CAN register list 3 ..107

Table 5-9 CAN communication conditions of the sample program..109

Table 5-10 CAN message IDs in the sample program..110

Table 6-1 Description of the entire LIN communication control registers and setting values..133

Table 6-2 LIN communication conditions of the sample program ...134

Table 6-3 LIN message IDs in the sample program..134

Table 7-1 Folder/file structure of the sample programs ..157

 11

AN07-00202-3E

Introduction

Thank you very much for purchasing the bits pot white (referred to as this starter kit or the starter

kit hereafter).

This starter kit is a beginner’s kit intended for those who wish to start learning microcontrollers and

on-board network processors. The kit is designed so that the beginners who ask “What is a

microcontroller?”, “How does it work?” and “How does it control a network?” can easily learn

what it is.

The kit includes flash microcontroller development tools, so if you have slight understanding about

the C language, you can rewrite a program to let the microcontroller perform in various ways. Even

if you do not know of programming, you may be able to enjoy learning a microcontroller with a

study-aid book about the C language.

This starter kit can also serve as an introductory training tool for electronic circuit practice or future

embedded software development in a class of a college or high school of technology or training for

freshman engineers of a manufacturer.

 12

AN07-00202-3E

Contact

Please ask the following e-mail address for the technical question.

Please confirm HP for the latest information and FAQ of bits pot.

Zip code: 105-8420 2-5-3 Nishi-Shinbashi, Minatoku, Tokyo

E-mail: pd-bitspot@tsuzuki-densan.co.jp

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

 13

mailto:pd-bitspot@tsuzuki-densan.co.jp
http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00202-3E

 14

Suppliers of the parts/materials

 Capacitors 22pF: GCM1552C1H220JZ02

1nF: GCM155R11H102KA01

1μF: GCM21BR11E105KA42

 0.1μF: GCM188R11E104KA42

4.7μF: GCM31CR71E475KA40

 Ceramic Resonator 4MHz: CSTCR4M00G15C

 Buzzer: PKLCS1212E40A1

 NTC Thermistors: NTCG164BH103JT1

 Ferrite Beads: MPZ2012S300AT

 Common Mode Filters ZJYS81R5-2P24T-G01

AN07-00202-3E

1 Setting up the starter kit
Before using this starter kit, be sure to check the components listed in Table 1-1 are fully

supplied.

Before connecting the bits pot white (referred to as the board hereafter), you need to install

software in your PC. You can download the software required for the starter kit from our web site.

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

No. Article Qty. Specifications Remarks

1 Board

1 Board mounted with

a Fujitsu Semiconductor

MB96F356

F2MC-16FX series microcontroller

See Figure 1-1

2 USB cable

1 USB （A to miniB) Accessory

3

CAN cable

1 3-pin cable Accessory

4 LIN cable

1 2-pin cable Accessory

5

PC 1 On which Windows XP normally runs and

USB2.0 ports are supported.

Approximately 200 MBytes free hard disk

space is required.

Prepare the PC by yourself.

Table 1-1 Component list

 15

http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00202-3E

3. LED lamp

3. LED lamp

3. LED lamp

11. Buzzer

10. 7SEG

 LED lamp

7. LIN connector5. CAN connector

6. LIN transceiver IC

8. USB-UART converter
9. USB connector

3. LED lamp

17. Extension pin

1. Target device

2. Target device oscillator

4. CAN transceiver IC

22. Extension power (12V)
20. Extension power (5V)

21. Extension GND

18. Jumper pin (JP1)

19. Jumper pin (JP2, JP3)

12. Mode SW
13. Reset SW 14. Test SW 16. Volume SW

15. Temperature sensor

Figure 1-1 External board view

“Table 1-2 List of board parts” shows the list of parts that make up this board.

No. Name Function Description

1 Target device MB96F356 Main microcontroller (MB96F356).

2 Target device oscillator
CSTCR4M00G15C

(4MHz)

Ceralock made by Murata Manufacturing

Oscillator for the main microcontroller.

3 LED lamps LED (red) x 10
LED lamps connected to the general-purpose I/O

pins.

 16

AN07-00202-3E

4 CAN transceiver IC MAX3058ASA+ Transceiver IC for CAN communication.

5 CAN connector 3-pin connector

Connector for CAN communication.

Connect this connector to the CAN connector on the

bits pot red.

6 LIN transceiver IC TJA1020T Transceiver IC for LIN communication.

7 LIN connector 2-pin connector

Connector for LIN communication.

Connect ｔhis connector to the LIN connector on the

bits pot yellow .

8
USB to UART

converter
FT232RL IC for conversion between UART and USB.

9 USB connector miniB
USB connector for connection with the PC to

write/debug a program.

10 7SEG LED 7SEG LED x 2 7SEG LEDs connected to general-purpose I/O pins.

11 Buzzer PKLCS1212E40A1

External-drive electric sounder made by Murata

Manufacturing. Connected to the PPG timer output

pin.

12 Mode SW Slide switch
Switches the operation mode of the main

microcontroller (MB96F356).

13 Reset SW Push switch Switch to reset the starter kit.

14 Test SW
Push switch × 2

Slide switch × 1

Push switches and slide switches connected to

general-purpose I/O pins for testing purpose.

15 Temperature sensor NTCG164BH103
NTC thermistor made by TDK

Temperature sensor connected to the A/D converter.

16 Volume SW Volume SW Volume SW connected to the A/D converter input.

17 Extension pins －
Extension pins of the main microcontroller.

For details, see the circuit diagram.

18 Jumper pin (JP1) －

Jumper pins for switching the LIN transceiver IC

power supply.

1-2: Supplied by USB bus power (5V)

2-3: Supplied from external power supply (CN7)

(12V)

The default is 1-2.

19
Jumper pins (JP2,

JP3)
－

Jumper pins for USB-UART conversion setting.

UART communication handshake setting.

1-2: Handshake by software.

2-3: Handshake by hardware.

 17

AN07-00202-3E

The default setting is 1-2 (common to JP2/JP3).

20
Extension power

(5V)
－ Extension 5V power terminal.

21 Extension GND － Extension GND terminal.

22
LIN transceiver IC

extension power (12V)
－

Extension power pin for the LIN transceiver IC.

This is used to supply power (12V) from an external

source.

When used, jumper pin (JP1) is required to be set to

2-3.

Table 1-2 List of board parts

 18

AN07-00202-3E

“Figure 1-2 System connection diagram” shows the connection of the system for single-unit

operation.

Please provide the PC by yourself.

* Prepare the PC by yourself.

(The power is supplied from the USB bus power.)

Use the USB cable included in the kit for the

connection.

Figure 1-2 System connection diagram

Connect the PC with the board by using the USB cable included in the kit.

The power supply for the board is supplied from USB. (USB bus power)

[Note]

Connect the USB directly to the PC. Do not connect the USB via an extension unit such as a

docking station, or via a USB hub.

 19

AN07-00202-3E

“Figure 1-3 System connection diagram (when performing CAN communication or LIN

communication)” shows the connection of the system for CAN communication and LIN

communication. (Note: When performing CAN communication or LIN communication, the bits

pot red or bits pot yellow, respectively, need to be purchased separately. Refer to each of the

manuals for the settings of the bits pot red or bits pot yellow when performing communication.)

CAN cable (included
accessory)

LIN cable (included
accessory)

AC adapter (included
accessory)

* Prepare the PC by yourself.

BLDC Motor
(Supplied part)

Figure 1-3 System connection diagram (when performing CAN communication or LIN

communication)

Connect the board to the PC using the supplied USB cable, and connect the bits pot red (CAN

communication) or bits pot yellow (LIN communication) to the board using the dedicated cables.

The power for the bits pot red and bits pot yellow is also supplied from USB, the same as this board.

(USB bus power)

 20

AN07-00202-3E

“Table 1-3 MB96F356 pin assignment” shows the pin assignment of the main microcontroller

MB96F356.

Table 1-3 MB96F356 pin assignment

Pin-No. Description Connected to Remarks

1 AVss GND －

2 AVRH GND －

3 P06_2/AN2/PPG2 TH1 －

4 P06_3/AN3/PPG3 －

5 P06_4/AN4/PPG4 －

6 P06_5/AN5/PPG5 －

7 P06_6/AN6/PPG6 JP2 －

8 P06_7/AN7/PPG7 JP3 －

9 P05_0/AN8/SIN2/INT3_R1 FT232RL(TXD) －

10 P05_1/AN9/SOT2 FT232RL(RXD) －

11 P05_2/AN10/SCK2 －

12 P05_3/AN11/TIN3 －

13 P05_4/AN12/TOT3/INT2_R SW5 SW pressed=L

14 P05_5/AN13/INT0_R/NMI_R SW3 SW pressed=L

15 P05_6/AN14/INT4_R SW4 －

16 P04_2/IN6/RX1/INT9_R/TTG6/TTG14 MAX3058(RXD) －

17 P04_3/IN7/TX1/TTG7/TTG15 MAX3058(TXD) －

18 Vss GND －

19 X0A/P04_0 －

20 X1A/P04_1 －

21 MD2 GND －

22 MD1 PULL-UP －

23 MD0 SW1 －

24 P00_0/AD00/INT8 SEG1 H output = On

25 P00_1/AD01/INT9 SEG1 H output = On

26 P00_2/AD02/INT10 SEG1 H output = On

27 P00_3/AD03/INT11 SEG1 H output = On

28 P00_4/AD04/INT12 SEG1 H output = On

29 P00_5/AD05/INT13 SEG1 H output = On

30 P00_6/AD06/INT14 SEG1 H output = On

 21

AN07-00202-3E

31 P00_7/AD07/INT15 SEG1 H output = On

32 P01_0/AD08/CKOT1/TIN1 －

33 P01_1/AD09/CKOTX1/TOT1 －

34 P01_2/AD10/INT11_R/SIN3 TJA1020T(RXD) －

35 P01_3/AD11/SOT3 TJA1020T(TXD) －

36 P01_4/AD12/SCK3 TJA1020T(NSLP) －

37 P01_5/AD13/SIN2_R/INT7_R －

38 P01_6/AD14/SOT2_R －

39 P01_7/AD15/SCK2_R －

40 P02_0/A16/PPG12 LED4 L output = On

41 P02_1/A17/PPG13 LED3 L output = On

42 P02_2/A18/PPG14 LED2 L output = On

43 P02_3/A19/PPG15 LED1 L output = On

44 P02_4/A20/TTG8/TTG0/IN0 －

45 RSTX RESET L input = Reset

46 X1 Q1 4 MHz oscillator

47 X0 Q1 4 MHz oscillator

48 Vss GND －

49 Vcc 5V －

50 C GND －

51 P02_5/A21/TTG9/TTG1/IN1/ADTG_R －

52 P04_4/SDA0/FRCK0 －

53 P04_5/SCL0/FRCK1 －

54 P03_0/ALE/IN4/TTG4/TTG12 SEG2 H output = On

55 P03_1/RDX/IN5/TTG5/TTG13 SEG2 H output = On

56 P03_2/WRLX/WRX/RX2/INT10_R SEG2 H output = On

57 P03_3/TX2/WRHX SEG2 H output = On

58 P03_4/HRQ/OUT4 SEG2 H output = On

59 P03_5/HAKX/OUT5 SEG2 H output = On

60 P03_6/RDY/OUT6 SEG2 H output = On

61 P03_7/ECLK/OUT7 SEG2 H output = On

62 P06_0/AN0/PPG0 VR1 Power supply voltage

division 0 to 100%

63 P06_1/AN1/PPG1 BZ1 －

64 AVcc 5V －

 22

AN07-00202-3E

1.1 Setting up the PC
Install the software required to operate this starter kit into the PC.

To set up the PC, take the following procedures.

① Downloading the software (refer to Section 1.1.1)

② Installing the USB driver (refer to Section 1.1.2)

③ Installing the integrated development environment SOFTUNE (bits pot white

dedicated version) (refer to 1.1.3)

④ Installing the PC Writer FUJITSU FLASH MCU Programmer

(bits pot white dedicated version) (refer to 1.1.4)

⑤ Installing EUROScope (refer to 1.1.5)

⑥ Configuring the board and connecting it to the PC (refer to 1.1.6)

 23

AN07-00202-3E

1.1.1 Downloading the software

Download the file from the following website, and decompress it.

bits pot URL：http://www.tsuzuki-densan.co.jp/bitspot/

1.1.2 Installing the USB driver

① Install the USB driver.

Download the driver that matches your OS from the following FTDI website.

 http://www.ftdichip.com/Drivers/D2XX.htm

Click on the Driver Version to

download.

Figure 1-4 Downloading the USB driver

 24

http://www.tsuzuki-densan.co.jp/bitspot/
http://www.ftdichip.com/Drivers/D2XX.htm

AN07-00202-3E

②After downloading the driver, decompress it, and then connect the board to the PC by using the

USB cable included in the kit. As shown in "Figure 1-5 Installing FT232R USB UART" the dialog

for “FT232R USB UART” installation is displayed; select “Install from a list or specific location”,

and then click the “Next” button.

Figure 1-5 Installing FT232R USB UART

③ As shown in “Figure 1-6 Selecting the search locations”, to search for the installation file, check

“Search for the best driver in these locations” and “Include this location in the search” only, select the

location at which the driver was decompressed, and then click the “Next” button; installation of the

driver starts.

Figure 1-6 Selecting the search locations

 25

AN07-00202-3E

④When the driver installation ends, the dialog shown in “Figure 1-7 Completing the USB Serial

Converter”, is displayed; click the “Finish” button.

Figure 1-7 Completing the USB Serial Converter

⑤After that, as shown in “Figure 1-8 Installing USB Serial Poｒｔ”, installation of “USB Serial Port” is

indicated; select “Install from a list or specific location” and then click the “Next” button.

Figure 1-8 Installing USB Serial Poｒｔ

 26

AN07-00202-3E

⑥As shown in “Figure 1-9 Selecting the search locations”, to search for the installation file, check

“Search for the best driver in these locations” and “Include this location in the search” only, select

the location at which the driver was decompressed, and then click the “Next” button; installation of

the driver starts.

Figure 1-9 Selecting the search locations

⑦When the driver installation ends, the dialog shown in “Figure 1-10 Installing USB Serial

Port” is displayed; Click the “Finish” button.

Figure 1-10 Installing USB Serial Poｒｔ

 27

AN07-00202-3E

1.1.3 Installing the integrated development environment SOFTUNE (bits

pot white dedicated version)

 Note

 If SOFTUNE V3 of the product version has been installed, first uninstall it, and then install

the bits pot white dedicated version.

Start installing the integrated development environment SOFTUNE. Decompress the

following file in the folder you decompressed in Section 1.1.1, “Downloading the

software”:

 ¥softwares¥softune¥ REV300021-BV.zip

① Double-click “setup.exe” from among the decompressed files to begin the

installation.

Figure 1-11 Installer

② Perform the installation by following the on-screen directions. Click the “OK”

button.

Figure 1-12 SOFTUNE setup confirmation

 28

AN07-00202-3E

③ Click the “Next” button.

Figure 1-13 Starting SOFTUNE setup

⑤ Click the “Next” button.

Figure 1-14 Caution on SOFTUNE setup

 29

AN07-00202-3E

⑥ If you agree, click the “Yes” button.

(If you do not agree, you cannot use the software.)

Figure 1-15 SOFTUNE setup/License agreement

⑦ Click the “Next” button.

Figure 1-16 SOFTUNE setup/Version information

 30

AN07-00202-3E

⑧ The dialog about the destination of installation appears; select the default

folder or desired folder and then click the “Next” button.

Figure 1-17 SOFTUNE setup/Selecting the destination of installation

⑨ Keep the default settings and then click the “Next” button.

Figure 1-18 SOFTUNE setup/Selecting the components

 31

AN07-00202-3E

⑩ Click the “Next” button.

Figure 1-19 SOFTUNE setup/Confirming the installation settings

⑪ The installation is performed.

Figure 1-20 SOFTUNE setup/Status

 32

AN07-00202-3E

⑫ Click the “Finish” button.

Figure 1-21 SOFTUNE setup/Completion

This completes the installation of SOFTUNE.

 33

AN07-00202-3E

1.1.4 Installing PC Writer (bits pot white dedicated version)

Start installing PC Writer. Look for the following file in the folder where you decompressed in

“Section 1.1.1 Downloading the software”:

 ¥softwares¥pc writer¥MB96F356_setup.exe

① Double-click the downloaded “MB96F356_setup.exe”; the dialog shown in “Figure 1-22 PC

Writer/Installation dialog” appears and installation starts; click the “Next” button.

Figure 1-22 PC Writer/Installation dialog

 34

AN07-00202-3E

② The dialog shown in “Figure 1-23 PC Writer/Setup type” appears; select “All”, and then click

the “Next” button.

Figure 1-23 PC Writer/Setup type

③ The dialog shown in “Figure 1-24 PC Writer/Ready to install” appears to tell that the setup is

ready to install PC Writer; click “Install”.

Figure 1-24 PC Writer/Ready to install

 35

AN07-00202-3E

④ After the installation ends, the dialog shown in “Figure 1-25 Completing the PC Writer

installation” appears to tell the completion of installation; click “Finish”.

Figure 1-25 Completing the PC Writer installation

This completes the installation of PC Writer.

 36

AN07-00202-3E

1.1.5 Installing EUROScope (evaluation version)

Start installing EUROScope (evaluation version). Look for the following file in the folder

where you decompressed in “Section 1.1.1 Downloading the software”:

 ¥softwares¥euroscope¥euroscope _setup.exe

① Double-click the “euroscope_setup.exe” file you downloaded to begin the

installation.

② Follow the on-screen directions to proceed with the installation. Click the “Next”

button.

Figure 1-26 EUROScope installation dialog

③ If you agree, check the checkbox and click the “Next” button.

(If you do not agree, you cannot use the software.)

Figure 1-27 EUROScope/License agreement

 37

AN07-00202-3E

④ Click the “Next” button.

Figure 1-28 EUROScope/Install path

⑤ Check the “Fujitsu F16LX/F16FX” checkbox, and then click the “Next” button.

Figure 1-29 EUROScope/Selecting the architecture

 38

AN07-00202-3E

⑥ Click the “Next” button.

Figure 1-30 EUROScope/Selecting the setup components

⑦ Click the “Next” button.

Figure 1-31 EUROScope/Confirming the setup information

 39

AN07-00202-3E

⑧The installation is performed.

Figure 1-32 EUROScope/Executing setup

⑨Once the installation has finished, click the “Finish” button.

This completes the installation of EUROScope.

Figure 1-33 EUROScope/Setup complete

 40

AN07-00202-3E

Next, activate Euroscope.

Select “All Programs”→ “EUROS”→ “EUROScope” from the Windows Start menu to activate

Euroscope. Because there is no license for the first time, the following screen is displayed.

⑩ To obtain a license, note down the Host ID (Fig. 1-34 (1)), and for customers outside of

Europe, click the “Request EUROScope lite 16FX key-other countries” button (Fig. 1-34

(2)).

(1)

(2)

xxxxxxxxx

Figure 1-34 EUROScope/License information screen

(Note:The screen in Figure 1-34 outputs and Euroscope can not be started case, though the installation of

Euroscope is completed. Such a situation occurs,when there are two or more MAC addresses of PC and installing.

Please set the MAC address to one and install and start.)

 41

AN07-00202-3E

⑪ When the following screen is displayed, fill in the Host ID (Fig. 1-34 (1)) you noted down

and the required fields using single-byte alphanumeric characters, then click the “Request Keys”

button. The license keys will be sent by e-mail at some later stage.

(Note: The situation may occur where “This page cannot be displayed” appears after you press the “Request

Keys” button. However, this is not a problem as long as the license keys are sent by e-mail.)

Figure 1-35 EUROScope/Information input screen

 42

AN07-00202-3E

⑫E-mail is sent by the EUROScope(Subject: “EUROScope Lite keys”).The license key is

appended. Please decompressed the attachment(euros-license.zip).

There is euros-license.key when the attachment is decompressed. euros-license.key save in the

EUROScope installation folder (the default is C:¥Program Files¥EUROScope).

(Note: The content of the key is different for each application.)

At this point, press the “Close” button in the screen shown in Fig. 1-35. Close the screen shown in

Fig. 1-34 also to finish.

This completes the installation of EUROScope.

 43

AN07-00202-3E

1.1.6 Configuring the board and connecting it to the PC

After installing SOFTUNE and EUROScope, configure the switches on the board

and connect the board to the PC.

① Set the mode switch on the board to “PROG”.

Set the mode SW to the

“PROG” side.

Figure 1-36 Mode switch

Mode switch Operation mode

PROG FLASH memory serial write mode

→ Used to write programs into the microcontroller.

RUN Single chip mode

→ Used to run the program written into it.

Then, connect it to the PC.

 44

AN07-00202-3E

② Connect the USB cable included in the kit to a USB port on the PC and the USB port on the

board. Be sure to directly connect between them without using a USB hub.

Connect a USB port on the PC. For information about port

locations and so forth, refer to the manual of the PC.

After SOFTUNE and EUROScope

installation, connect the USB cable.

USB port

Figure 1-37 Connection between the PC and the board

The power of the board is supplied via USB (USB bus power).

[Note]

If a driver installation dialog is displayed after connecting the board to the PC, USB

drivers may be incorrectly installed. Return to Section 1.1.2, “Installing the USB driver”

and begin the installation again from the start.

 45

AN07-00202-3E

2 Running the program

To run a program with the starter kit, use either of the following procedures.

① Executing in single chip mode Go to P.48

② Debugging by using Monitor Debugger Go to P.56

 46

AN07-00202-3E

2.1 Executing in single chip mode

In single chip mode, use the following procedures.

① Building a project

② Writing the program into the microcontroller

2.1.1 Building a project

 Preparation

Decompress the following file in advance from within the folder you decompressed in Section

1.1.1, “Downloading the software”.

¥sample program¥bitspot_white_SampleProgram.zip

① Activate SOFTUNE.

Select “All Programs” → “Softune V3” → “FFMC-16 Family Softune Workbench” from

the Windows Start menu to activate Softune.

Figure 2-1 Activating SOFTUNE

 47

AN07-00202-3E

② Open the workspace file for the sample program.

Select “Open Workspace” from the “File” menu.

Figure 2-2 Opening a workspace

③Open the “bitspot_white_SampleProgram.wsp” file in

the bitspot_white_SampleProgram folder of the sample program.

¥bitspot_white_SampleProgram¥bitspot_white_SampleProgram.wsp

Figure 2-3 Selecting a workspace

At this point, the workspace file for running the sample program is open. (The

sample program is not executed when this workspace file is opened.)

 48

AN07-00202-3E

④ The workspace screen is opened. Select the project you want to run from among (1) to (3) below,

and set it as the active project. Next, click “Project” → “Build” from the menu to build the project.

(The method for selecting the active project is by “right-clicking on the project name” and then

selecting “Set as Active Project”.)

(1) For single-unit operation

“single_operation.abs” ⇒ Active project

(2) For CAN communication

“CAN.abs” ⇒ Active project

(3) For LIN communication

“LIN MASTER.abs” ⇒ Active project

Set the project to run as the

active project (bold font)

Figure 2-4 Building a project

 49

AN07-00202-3E

When the build is executed, the following is displayed in the SOFTUNE

output window.

No Error. Check that there are no errors.

C:¥softune¥bits pot white files¥sample

program¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.mhx

Now starting load module converter...

C:¥softune¥bits pot white files¥sample

program¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.abs

Now linking...

・・・

ROM_cfg_block.c

MAIN.C

start907s.asm

--------------------Configuration: single_operation.prj - Debug--------------------

Now building...

Figure 2-5 Completing the build

 50

AN07-00202-3E

2.1.2 Writing the program into the microcontroller

 Preparation

 The mode switch on the board is required to be set to “PROG” in order to write the program. If

the mode switch is not set to “PROG”, switch the mode switch to “PROG”.

① Select “All Programs” → “FUJITSU FLASH MCU Programmer” → “MB96F356” from the

Windows Start menu to activate PC Writer.

② To select a file to be written as shown in “Figure 2-6 Opening the file to write”, click the “Open”

button.

Click this.

Figure 2-6 Opening the file to write

 51

AN07-00202-3E

③ The dialog that allows you to select the file is displayed as shown in “Figure 2-7 Selecting the

file to write”; select the file built in Section “2.1.1, ④ Building a project” and then click “Open”.

(1) For single-unit operation

¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.mhx

(2) For CAN communication

¥bitspot_white_SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx

(3) For LIN communication

¥bitspot_white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx

Figure 2-7 Selecting the file to write

④ Then, select the COM port to be used for the writing. Click the “Set Environment” button; the

COM port selection dialog appears. Select the COM port with which the board is connected, and

then click the “OK” button.

Click this.

 52

AN07-00202-3E

Figure 2-8 Selecting the COM port to be used for writing

Note: To check the COM port in use, right-click “My Computer” and then select “Properties”; the

system properties are displayed. Select the “Hardware” tab and then click the “Device Manager”

button. After Device Manager activates, check the COM port number in the parentheses of “USB

Serial Port (COM n)” under “Port (COM and LPT)” in the tree shown in “Figure 2-9 Checking the

COM port”.

Check this.

Figure 2-9 Checking the COM port

 53

AN07-00202-3E

⑤ As shown in “Figure 2-10 Writing the program”, press the “Full Operation” button to start

writing the program; the dialog that asks you to press the Reset switch is displayed. Press the

Reset SW on the board, and then click the “OK” button on the dialog; the program write sequence

starts. For the location of the Reset SW, see “Figure 1-1 External board view”.

Click this.

Figure 2-10 Writing the program

⑥ The dialog shown in “Figure 2-11 Completing the program writing” is displayed to notify

you of the completion of the program writing; press the “OK” button to quit PC Writer.

Figure 2-11 Completing the program writing

Set the MODE switch on the board to “RUN” and then press the Reset button; the program starts

running. (Note: To perform CAN communication and LIN communication, the bits pot red and bits pot

yellow need to be connected. Refer to “Figure 1-3 System connection diagram”. In addition, refer to the respective

manuals for the connections and settings in the starter kit.)

 54

AN07-00202-3E

2.2 Debugging by using Monitor Debugger

To debug by using Monitor Debugger, use the following procedures.

① Activating and configuring SOFTUNE

② Changing the source file to activate with EUROScope

③ Writing the program into the microcontroller

④ Activating and configuring EUROScope

 55

AN07-00202-3E

2.2.1 Activating and configuring SOFTUNE

 Preparation

Decompress the following file from within the folder you decompressed in “Section 1.1.1,

Downloading the software” in advance.

¥sample program¥bitspot_white_SampleProgram.zip

① Activate SOFTUNE.

Click “All Programs” → “Softune V3” → “FFMC-16 Family Softune Workbench” from

the Windows Start menu to activate Softune.

Figure 2-12 Activating SOFTUNE

 56

AN07-00202-3E

② Open the workspace file for the sample program.

Select “Open Workspace” from the “File” menu.

Figure 2-13 Opening a workspace

③ Open the “bitspot_white_SampleProgram.wsp” file in the

bitspot_white_SampleProgram folder of the sample program.

¥bitspot_white_SampleProgram¥bitspot_white_SampleProgram.wsp

Figure 2-14 Selecting a workspace

At this point, the workspace file for running the sample program is open. (The

sample program is not executed when this workspace file is opened.)

 57

AN07-00202-3E

2.2.2 Changing the source file to activate with EUROScope

To run the sample programs using EUROScope, the source files need to be changed and

built in SOFTUNE. Use the following procedures.

① As shown in “Figure 2-15 Opening the ROM_cfg_block.c file”, select the project to

execute from the list of SOFTUNE projects.

Select “ROM_cfg_block.c” from within the project, and double-click to open the file.

(Note: The “ROM_cfg_block.c” file of each project is shown (1) to (3) below.

Furthermore, ensure that the project for each of these operations is set as the active

project (shown in bold font). (The method for setting the active project is by

“right-clicking the project name” and select “Set Active Project”.)

(1) For single-unit operation

“single_operation.abs” (Active project) → “Source Files” → “ROM_cfg_block.c”

(2) For CAN communication

“CAN.abs” (Active project) → “Vct” → “ROM_cfg_block.c”

(3) For LIN communication

“LIN MASTER.abs” (Active project) →“Source Files” → “APPL” →

“ROM_cfg_block.c”

Double-click

the “ROM_cfg_block.c" file.

Check that the project has become

the active project (bold fonts).

Figure 2-15 Opening the ROM_cfg_block.c file

 58

AN07-00202-3E

② Change the “OFF” part to “ON” in the line

“#set BACKGROUND_DEBUGGING OFF;” (default state) under the

“4.18 Enable Background Debugging Mode” line in the ROM_cfg_block.c file

(Fig. 2-16 (1)).

③ Check that the value of the second digit from the right in the line

 “#set BDM_CONFIGURATION B’000000000000010;” (default state) shown in

Fig.2-16 (2) is “1”.

④ Check that the value (BAUDRATE) is “115200” in the line

“#set BDM_BAUDRATE 115200;” shown in Fig. 2-16 (3).

（２）
（１）

（３）

Figure 2-16 ROM_cfg_block.c file

⑤ Select “File” → “Save All” from the SOFTUNE menu to save the changes to the

“ROM_cfg_block.c” as shown in Fig. 2-16.

 59

AN07-00202-3E

⑥ Select “Project” → “Build” from the SOFTUNE menu to build the project.

Figure 2-17 Building the project

⑦ Once the build is completed, check that no errors are output, and check the .mhx

file is created in the following locations.

(1) For single-unit operation

¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.mhx

(2) For CAN communication

¥bitspot_white_SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx

(3) For LIN communication

¥bitspot_white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx

 60

AN07-00202-3E

2.2.3 Writing the program into the microcontroller

 Preparation

 In order to write the program, the mode switch on the board needs to be set to “PROG”. If the

mode switch is not set to “PROG”, switch the mode switch to “PROG”.

① Select “All Programs” → “FUJITSU FLASH MCU Programmer” → “MB96F356” from the

Windows Start menu to activate PC Writer.

② In order to select the file to write as shown in “Figure 2-18 Opening the file to write”, click the

“Open” button.

Click this.

Figure 2-18 Opening the file to write

 61

AN07-00202-3E

③ The dialog that allows you to select the file is displayed as shown in “Figure 2-19 Selecting the

file to write”; select the file built in Section 2.2.2, “⑦ Building the project” and then click “Open”.

(1) For single-unit operation

¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.mhx

(2) For CAN communication

¥bitspot_white_SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx

(3) For LIN communication

¥bitspot_white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx

Figure 2-19 Selecting the file to write

Then, select the COM port to be used for the writing. Click the “Set Environment” button; the

COM port selection dialog appears. Select the COM port with which the board is connected, and

then click the “OK” button.

Click this.

 62

AN07-00202-3E

Figure 2-20 Selecting the COM port to be used for writing

Note: To check the COM port in use, right-click “My Computer” and then select

“Properties”; the system properties are displayed. Select the “Hardware” tab and then

click the “Device Manager” button.

After Device Manager activates, check the COM port number in the parentheses of

“USB Serial Port (COM n)” under “Port (COM and LPT)” in the tree shown in “Figure

2-21 Checking the COM port”.

Check this.

Figure 2-21 Checking the COM port

 63

AN07-00202-3E

⑤ As shown in “Figure 2-22 Writing the program”, press the “Full Operation” button to start

writing the program; the dialog that asks you to press the Reset switch is displayed. Press the

Reset SW on the board, and then click the “OK” button on the dialog; the program write

sequence starts. For the location of the Reset SW, see “Figure 1-1 External board view”.

Click this.

Figure 2-22 Writing the program

⑥ The dialog shown in “Figure 2-23 Completing the program writing” is displayed to notify you

of the completion of the program writing; press the “OK” button to quit PC Writer.

Figure 2-23 Completing the program writing

⑦ Remove the USB cable from the board and set the mode switch to “RUN”. After this, reconnect

the USB cable. (Note: To perform CAN communication and LIN communication, the bits pot red

and bits pot yellow need to be connected. Refer to “Figure 1-3 System connection diagram”. In addition, refer to

the respective manuals for the connections and settings in the starter kit.)

 64

AN07-00202-3E

2.2.4 Activating and configuring EUROScope

① Activating EUROScope.

 Click “All Programs” → “EUROS” → “EUROScope” from the Window Start

menu. (Alternatively, double-click the “EUROScope” shortcut on the desktop.)

The EUROScope debug window is displayed.

② Specify the information file (single_operation.abs) necessary for execution.

Select “File” → “Open Application…”.

Figure 2-24 Opening a file

 65

AN07-00202-3E

③ Read the file (.abs).

Select the .abs file as specified in the following locations and click the “Open”

button.

(1) For single-unit operation

¥bitspot_white_SampleProgram¥single_operation¥Debug¥ABS¥single_operation.abs

(2) For CAN communication

¥bitspot_white_SampleProgram¥CAN¥Debug¥ABS¥CAN. abs

(3) For LIN communication

¥bitspot_white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER. abs

(Note: It is not a problem if “No source for module ‘_ffmc16’” is displayed

on the EUROScope debug screen after reading the file.)

Figure 2-25 Selecting the abs file

④ Select the PC connection setting for the board.

Select “Preferences” → “Select Target Connection…” from the menu.

Figure 2-26 Board connection setting menu

 66

AN07-00202-3E

⑤ “Select target connection” (Fig. 2-27) is displayed.

Check the “Fujitsu 16FXBootROM (RS232)” is selected. Then, press the

“Configure” button.

Figure 2-27 Board connection setting

⑥ “Configure 16FX BootROM connec…” (Fig. 2-28) is displayed. Set each of

the fields as follows.

• Port: Select the port number of the connected COM port.

(Note: Set this to the COM port number you verified in Step ④ of Section 2.2.3,

“Writing the program into the microcontroller”. However, for COM port numbers of

“10” or higher, because the setting as shown in Fig. 2-28 cannot be configured, change

the PC port number to “9” or less before making this setting.)

• Baudrate: 115200

• Communication options: Asynchronous communication

: Int/Ext vector mode

 When you have finished all of the settings, click the “OK” button.

Figure 2-28 Board connection settings

 67

AN07-00202-3E

⑦ In “Select target connection”, click the “OK” button.

Figure 2-29 Board connection settings complete

⑧ Press the “RESET” button on the board, and then

select “Communication” → “Open” from the menu,

Figure 2-30 Opening a file

(Note: After doing the above mentioned procedure, The message in Figure 2-31 outputs.

Please push "Yes".)

Figure 2-31 Output message

 68

AN07-00202-3E

If EUROScope is correctly connected to the board, the general-purpose registers, code, and

memory values are displayed in the EUROScope window. (Figure 2-32 Debug screen)

Furthermore, the button for starting execution is enabled. (Figure 2-33 Debug execution

button (1))

Figure 2-32 Debug screen

 （１）

Figure 2-33 Debug execution button

 69

AN07-00202-3E

⑨ Run EUROScope. (Note: To perform CAN communication or

LIN communication, check that the bits pot red or bits pot yellow is connected.)

Select “Target” → “Initialize” from the menu.

Figure 2-34 Initializing debug execution

Check that there is a yellow arrow at the start of the main routine (under void main

(void)) in the program window displayed in the center of the EUROScope screen.

Figure 2-35 Beginning of the program

 70

AN07-00202-3E

⑩ Once you have confirmed the yellow arrow, select “Target” → “Go” from

the menu to run EUROScope.

(This makes it possible to perform operations on the board.)

Figure 2-36 Starting debug execution

⑪ To stop debug execution on the board, stop from EUROScope.

Select “Target” → “Stop” from the menu to stop execution. (This stops the

operation of this board.)

Figure 2-37 Stopping debug execution

(If you want to run again without quitting EUROScope, repeat the procedure from

step ⑨ above.)

 71

AN07-00202-3E

2.3 Exiting EUROScope

The procedure for exiting EUROScope is as follows.

① Select “Communication” → “Close” from the menu.

Figure 2-38 Ending the execution program

② Select “File” → “Exit” from the menu. The EUROScope debug window closes.

Figure 2-39 Exiting EUROScope

(Note: There is a case that the message to save EUROScope configuration of Figure 2-40 outputs

after doing the above mentioned procedure. Please put the check in "Don't show again" and push

"Yes" for the following messages. Next, figure 2-41 outputs. Please input an arbitrary name to the

“File name” and push “save”.Next time, when EUROScope is started, the message doesn't output.)

Figure 2-40 Output message

 72

AN07-00202-3E

Figure 2-41 Configuration save

 73

AN07-00202-3E

2.4 Exiting SOFTUNE

The procedure for exiting SOFTUNE is as follows.

① Select "File” → “Close Workspace” from the menu.

Figure 2-42 Closing a workspace

② A message pops up asking “Save changes to project?”. Click the “Yes” button.

Figure 2-43 Saving a workspace

 74

AN07-00202-3E

③ Select “File” → “Exit” from the menu to exit SOFTUNE.

Figure 2-44 Exiting SOFTUNE

This completes basic operations up to starting and exiting debug execution, using the sample

program.

 75

AN07-00202-3E

3 Operation of the sample program

This section describes the operation of the sample program. The operation of the sample is

cl

N communication operation with bits pot red)

3.1 bits pot white single-unit operation
le unit is shown in this section.

ol and

(red) 7SEG LED, and buzzer are activated by controlling the

Figure 3-1 Controls and operations during single-unit operation

⑩ 7SEG (red)

assified into the following three categories.

① bits pot white single-unit operation

② CAN communication operation (CA

③ LIN communication operation (LIN communication operation with bits pot yellow)

The operation of programs operating bits pot white as a sing

“Figure 3-1 Controls and operations during single-unit operation” shows each contr

mechanicals supported in single-unit operation. Descriptions of each of the controls and

mechanicals are given in Table 3-1.

 In single-unit operation, the LED

SW3, SW4, SW5, volume SW, and temperature sensor on the board.

⑨ LED1 to 4 (red)

 ① Mode

② Reset SW

⑧ Buzzer

 Volume SW ⑦

③ SW3 ⑤ SW5

⑥ Temperature sensor④ SW4

SW

 76

AN07-00202-3E

No. Name Function Description

① Mode SW Control

Switches between PROG mode and RUN mode.

a programs PROG: Write

RUN: Run the program

② Reset SW Control Resets the MCU when pressed.

③ SW3 Control and the 7SEG when pressed. Lights up all of LED1, 2

④ SW4 Control

SW,

ate.

re

Ds.

Selects the operation mode.

Left: Enables operation of SW3, SW5, and the volume

and LEDs 1 to 2, 7SEG and buzzer oper

Right: The temperature sensor is enabled and the temperatu

sensor information is displayed on the 7SEG LE

⑤ SW5 Control
.

Switch the buzzer output on/off each time it is pressed.

The sound is changed by controlling the volume SW

⑥ Temperature sensor
e 7SEG

Control
The temperature sensor information is displayed on th

LEDs. The 7SEG display changes every 5°C.

⑦ Volume SW Control Changes the 7SEG display and the buzzer sound.

⑧ Buzzer Mechanical Produces a sound when SW5 is pressed.

⑨ LED (red) Mechanical Lights up when SW3 is pressed.

⑩ 7SEG (red e sensor.) Mechanical Displays according to SW3, volume SW, and temperatur

 Table 3-1 Single-unit esoperation/D criptions of the controls and mechanicals

 77

AN07-00202-3E

3.2 CAN communication operation (CAN communication operation
with the bits pot red)

“Figure 3-2 CAN communication operation/Controls and mechanicals” shows the controls and

mechanicals, and “Table 3-2 CAN communication operation/Descriptions of the controls and

mechanicals” provides descriptions about them. The bits pot red performs CAN communication,

controls the motor mounted on the bits pot red, and displays the motor rotation information and the

information received from temperature sensor.

 ⑨ CAN Connector

⑧ 7-SEG (red)

⑦ LED1 to 4 (Rotation

data)

 ① Mode SW

③ SW3 (Rotate/Stop)

⑤ SW5 (Brake/Resume)

② Reset SW
④ SW4 (Rotation direction)

⑥ Volume SW

 (Rotation speed)

Figure 3-2 CAN communication operation/Controls and mechanicals

 78

AN07-00202-3E

No. Name Function Description

① Mode SW Control

Switches between PROG mode and RUN mode.

PROG: Write a program

RUN: Run the programs

② Reset SW Control Resets the MCU when pressed.

③ SW3 Control

Rotates/stops the motor in turn when pressed. The motor

rotates if it is stopped and stops if it is rotating when this

switch is pressed.

④ SW4 Control

Selects the direction of the motor rotation.

Right: The motor rotates clockwise.

Left: The motor rotates counterclockwise.

⑤ SW5 Control

Brakes/resumes the motor in turn when pressed. The

temperature measurement mode transition command is issued

when pressed for a long time.

⑥ Volume SW Control Changes the rotation speed of the motor.

⑦ LED (red) Display Indicates motor rotation information.

⑧ 7SEG (red) Display
Displays temperature information acquired while in

temperature measurement mode.

⑨ CAN connector Mechanical
During actual operation, needs to be connected by wire for

CAN communication with the bits pot red.

Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals

 79

AN07-00202-3E

3.3 LIN communication operation (LIN communication operation
with the bits pot yellow)

“Figure 3-3 LIN communication operation/Controls and mechanicals” shows the controls and

mechanicals, and “Table 3-3 LIN communication operation/Descriptions of the controls and

mechanicals” provides descriptions about them.

Performs LIN communication with the bits pot yellow. This starter kit operates as the LIN master

and sends the operation mode using the ID field. This starter kit and the bits pot yellow outputs to

the LED (red), 7SEG display, and buzzer on the starter kit based on the SW operations, temperature

sensor, and volume SW of the starter kit. Furthermore, if an error occurs during LIN

communication, the buzzer is output (Note 1).

Note 1: If the sample program for LIN communication is operated while not communicating with

the bits pot yellow, this is treated as a LIN communication error, and the starter kit outputs a buzzer

sound.

3. SW2 ⑪ LIN Connector

 ⑨ 7SEG (red)

⑩ LED1 to 4

① Mode

SW

 ⑧ Buzzer

② Reset SW

⑦ Volume SW

④ SW4

⑥ Temperature sensor

③ SW3

⑤ SW5

Figure 3-3 LIN communication operation/Controls and mechanicals

 80

AN07-00202-3E

Table 3-3 LIN communication operation/Descriptions of the controls and mechanicals

No. Name Function Description

① Mode SW Control

Switches between RPG mode and RUN mode.

PROG: Write a program

RUN: Run the program

② Reset SW Control Resets the MCU when pressed.

③ SW3 Control

If this is press when SW4 is on the left, the currently

displayed values of the LEDs and 7SEG display count up,

and the bits pot yellow LEDs also counts up. When SW4 is

on the right, only the LEDs of the starter kit count up.

④ SW4 Control

Selects the operation mode.

Left: The LED, 7SEG display, and LEDs on the bits pot

yellow operate when SW3 or SW5 are pressed.

Right: Only the LEDs of the starter kit operate when SW3

or SW5 are pressed. The 7SEG display and buzzer

operate based on each SW, volume SW, and the

temperature sensor on the board.

⑤ SW5 Control

If this is pressed when SW4 is on the left, the currently

displayed values of the LEDs and 7SEG display count

down, and the bits pot yellow LEDs also counts down.

When SW4 is on the right, only the LEDs of the starter kit

count down.

⑥ Temperature sensor Control
Sends the temperature sensor temperature when SW4 is on

the right.

⑦ Volume SW Control
When SW4 is on the left, sends volume SW information

for the starter kit.

⑧ Buzzer Mechanical

When SW4 is on the right, outputs a buzzer sound.

Furthermore, the sound that is output is changed by

controlling the volume SW on the bits pot yellow. The

buzzer also sounds if an error occurs during LIN

communication.

⑨ 7SEG (red) Mechanical

When SW4 is on the left, counts up or counts down

synchronized with the LEDs when SW3 or SW5 are

pressed.

When SW4 is on the right, this changes by 5°C based on

 81

AN07-00202-3E

the temperature sensor temperature.

⑩ LED (red) Mechanical

When SW4 is on the left, counts up or counts down

synchronized with the 7SEG display when SW3 or SW5

are pressed.

When SW4 is on the right, only these LEDs are controlled.

4 Try to implement single-unit operation

4.1 Overview of single-unit operation
The board operates as a single-unit board controlled by the switches (SW3, SW4, SW5, volume

SW) and temperature sensor as shown below.

4.1.1 Controlling the SW inputs to light up the LEDs

The board is fitted with SW3 as shown in “Figure 4-1 Switches when the board is in single-unit

operation” which is connected to pins of the microcontroller.

This section describes how the microcontroller detects the state of SW3 when SW3 is operated in

order to turn the LED on and off.

SW3

Figure 4-1 Switches when the board is in single-unit operation

First, a diagram (schematic) of the connections between SW3 and the microcontroller pins on the

board is shown in Figure 4-2 Connection configuration between SW3 and the microcontroller pins

(schematic diagram)”.

 82

AN07-00202-3E

On the board, the SW3 is connected to the P05_5 pin, which is a general-purpose I/O port of the

microcontroller. When SW3 is not pressed (OFF), the voltage on pin P05_5 of the microcontroller

is Vcc (5V) and the input is high. Furthermore, when SW is pressed (ON), the voltage to pin P05_5

is GND and the input to the P05_5 pin is low. The input state of pin P05_5 thus changes depending

on the control of SW3. When SW3 is OFF

Microcontroller

Pin P05_5

IO_PDR02 Register

When SW3 is ON

Microcontroller

Pin P05_5

IO_PDR02 RegisterGND

When SW3 is OFF

SW3 SW3

Vcc Vcc

GND

Figure 4-2 Connection configuration between SW3 and the microcontroller pins (schematic

diagram)

This change in the state of the pin can be detected by the program running on the microcontroller.

In the microcontroller that is mounted on the board, the state of pin P05_5 can be determined from

the value of the PDR register (IO_PDR05) for the I/O port within the microcontroller.

The register is memory that stores the microcontroller control state and operating state. The CPU

and peripheral functions can be controlled by writing data to and reading data from the registers.

Furthermore, peripheral functions refer to functions such as I/O ports, timers, and A/D converters

that are built into the microcontroller.

The values of registers can be read using instructions from the microcontroller program. In other

words, the microcontroller program can determine the control state of SW3 by reading the value of

this PDR register (IO_PDR5). The values indicating the state of the pin are “1” for high, and “0”

for low. As a result, the state of the P05_5 pin, and therefore the control state of SW3, can be

viewed by reading the value of the PDR register (IO_PDR05).

However, when using the PDR register (IO_PDR05), it is necessary to set whether to use as an

input or an output. This register is called the DDR register (IO_DDR05).

In this case, P05_5 is used as an “input” pin in order to sample the SW3 input signal. As a result,

“0” needs to be written to the DDR register (IO_DDR05) corresponding to the PDR register

(IO_PDR05).

Next, for the LED control, pins P02_0 to P02_3 of the microcontroller are connected to LED 1 to

4. In this case, the specifications are to set the PDR register (IO_PDR02) to low (“0”) to turn the

 83

AN07-00202-3E

LED on, and set the register to high (“1”) to turn the LED off. Because the P02_0 to P02_3 pins

therefore need to be set as “output” pins, “1” needs to be written to the corresponding DDR register

(IO_DDR02).

Summarizing the above, the microcontroller program performs the processing to detect the SW

control state and turn the LEDs on and off by writing “0” to IO_DDR05 to set pin P05_5 as an

input, and reading the value of IO_PDR05 corresponding to the P05_5 pin. Furthermore, the

program writes “1” to IO_DDR02 to set pins P02_0 to P02_3 as outputs and writes values to

IO_PDR02 corresponding to pins P02_0 to P02_3.

4.1.2 Changing the buzzer sound using the volume SW

This section introduces the process that converts the analog signal into digital using an A/D

converter by operating the volume SW, reads the signal internally as a digital signal, and changes

the buzzer sound according to changes in the digital signal. The A/D converter is a function that

takes an analog value, divides it within specifications based on a set of rules, and converts it to a

digital value. Furthermore, this function is built into the microcontroller, and the conversion

process is called A/D conversion.

In the board, the voltage value applied to the analog pin for the A/D converter can be controlled

by using the volume SW. The analog signal is input to the microcontroller by using this knob. The

input analog signal is converted into a digital signal by the A/D converter and is then processed by

the microcontroller.

Volume SW

Figure 4-3 Volume SW when the board is in single-chip operation

Thus, in order to explain the mechanism of the volume SW, the symbol for a variable resistor is

shown in “Figure 4-4 Variable resistor”.

In fact, volume SW is actually a variable resistor. The board has the circuit configuration shown

 84

AN07-00202-3E

in “Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic

diagram)” which changes the applied voltage value depending on this knob, and applies this

voltage to the pin that performs A/D conversion. The applied voltage is converted to digital in 1024

levels, and can be handled as an internal signal.

Figure 4-4 Variable resistor

Microcontroller

(Variable resister)

Volume SW
Registers

Pin AN0

ADCR

ADCS

GNDGND

Vcc

Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic

diagram)

The method for changing the buzzer sound is described next.

The buzzer mounted on the board is an external-drive buzzer, which is able to change the sound

because it generates a sound with an arbitrary frequency for the given voltage. A pulse wave is

therefore output from the microcontroller to produce an arbitrary frequency.

Basically, the PPG timer built into the microcontroller is used to produce output by setting the

“H” and “L” widths of the pulses. Therefore, if the output pulse is changed, the buzzer sound also

changes. (In the program that runs on the board, the PPG timer output pulse is already configured.)

 85

AN07-00202-3E

Figure 4-6 Sound produced by the external-drive buzzer (Schematic diagram)

Summarizing the above, if the analog value (voltage value) that is changed by controlling the

volume SW is converted into a digital value internally within the microcontroller and a pulse

corresponding to the digital value is output to the buzzer from the PPG timer, then the buzzer sound

is changed by controlling the volume SW.

4.1.3 7SEG display by temperature sensor operation

The board has a built-in temperature sensor. This section describes how the 7SEG display is

controlled by using the temperature sensor.

The temperature sensor is a sensor that detects changes in temperature. Put simply, it is a

thermometer for measuring the temperature. Although there are a variety of ways to measure

temperature, the temperature sensor mounted on this board is a thermistor. A thermistor is

temperature sensor where the resistance changes depending on the temperature by using a

resistance element that employs the temperature characteristics of semiconductors.

A diagram of the circuitry around the temperature sensor on the board (schematic diagram) is

shown in “Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram)”. When

the resistance value of the temperature sensor changes, the input voltage to the A/D converter of the

microcontroller also changed due to this circuitry.

パルス出力

Buzzer

Pulse output

Microcontroller

Microcontroller

Temperature sensor

Pin

PPG timer

Vcc

GND

R=10kΩ

GND

Pin AN1

Registers

ADCS

ADCR

Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram)

 86

AN07-00202-3E

Next, the 7SEG display is basically the same as turning on and off the LEDs.

Each segment (each single thin, long display element) in the 7SEG display is treated the same as a

single LED, and the display method for displaying numbers using the 7SEG display is to write a

value (“0” for on, “1” for off) to the PDR register corresponding to each segment.

Summarizing the above, the input voltage is changed by changes in the resistance of the

temperature sensor. The 7SEG display can then change in response to the temperature of the sensor

by performing A/D conversion of the input voltage using the A/D converter of the microcontroller

and changing the 7SEG display according to the A/D converted digital value.

 87

AN07-00202-3E

4.1.4 Sample Programs

The flowcharts of the sample programs are shown in the following diagrams (“Figure 4-8

Flowchart of main routine” to “Figure 4-11 Flowchart of SW5 operation”).

First, the microcontroller internal operating clock is initialized, and the LED and 7SEG display

pins are initialized. Next, the external interrupts corresponding to the SW operation are initialized.

After this, the volume SW side and temperature sensor side are divided by the state of SW4, each

of the A/D converters are initialized, and A/D conversion processing is performed to display the

7SEG display. Furthermore, if an interrupt occurs at this time due to the operation of SW3 or SW5,

all of the LEDs and the 7SEG display are turned on, or the buzzer is sounded, or these are stopped.

START

Clock initialization

The used LED and

 7SEG pins initialization

Figure 4-8 Flowchart of main routine

External interrupts

 (SW input) initialization

Turn off LED, 7SEG

Is this the first processing for

the volume switch side?

Is this the first processing

for the temperature sensor

side?

Yes
No

Yes

No

Left Right

Which side is SW4?

Start A/D conversion

(volume SW)

Initialize A/D converion processing

(temperature sensor)

Start A/D conversion

(temperature sensor)

Initialize A/D converter

processing (volume SW)

 88

AN07-00202-3E

Start A/D interrupt

Clear A/D conversion interrupt source

Left
Which side is SW4?

Right

from volume SW

Acquire A/D value

from temperature sensor

Acquire A/D value

7SEG display (00 to 99)

No
Is buzzer output enabled?

Set PPG interval and duty

cycle based on volume SW level

7SEG display (00 to 55)

End processing

 Yes

Figure 4-9 Flowchart of A/D conversion processing of the volume SW and temperature sensor

 89

AN07-00202-3E

Start SW3 external interrupt processing

Clear interrupt source

Turn off LED1 to 2 and all 7SEG

Left

Which side is
SW4?

Right

End processing

Figure 4-10 Flowchart of SW3 operation

Start SW5 external interrupt processing

Clear interrupt source

Acquire A/D value

Yes

PPG first processing?

No

Which side is
SW4?

Right

Left

Buzzer output on/off

Initialize PPG timer
Disable buzzer output

End processing

Figure 4-11 Flowchart of SW5 operation

 90

AN07-00202-3E

Next, we will take a look at an actual program.

Check the following folder in the sample programs. There are several files stored in this folder.

Among these, we will first open MAIN.C.

¥bitspot_white_SampleProgram¥single_operation

First there is the main function shown in “Figure 4-12 main routine program (MAIN.C)”. Within

this function, processing is performed to “the microcontroller internal clock initialization", “LED

and 7SEG pins initialization”, “External interrupts initialization”, and “Infinite loop that performs

A/D conversion processing”.

void main(void)
{
 (omitted)
 initial_clock();

IO_PDR02.bit.P3=1;
IO_DDR02.bit.D23=1;

(omitted)

 Ext_initial();

 IO_PDR00.byte = 0xff;
 IO_DDR00.byte = 0xff;

(omitted)

 while (1)
 {

if(IO_PDR05.bit.P6==1)
 {
 ADC_initial_tmp();

 (omitted)

 ADC_start();

 }
 else if(IO_PDR05.bit.P6==0)
 {

 ADC_initial_bsw();

 (omitted)

 ADC_start();
 }

}/* while loop */

}

←internal clock initializaton

←LED pin initializaton

← External interrupt initializaton

← 7SEG pins initializaton

← Loop initializaton

← Temperature sensor (A/D conversion)

processing

← Volume switch (A/D conversion)

processing

Figure 4-12 main routine program (MAIN.C)

 91

AN07-00202-3E

Next, the program for A/D conversion processing is shown in “Figure 4-13 A/D conversion

program for volume SW and temperature sensor operation (ADC.C)”.

On the temperature sensor side and volume SW side, the digital values are obtained and divided up

to change the 7SEG display or buzzer sound by the A/D conversion interrupt routine.

__interrupt void interrupt_AD(void)
{

 IO_ADCSH.bit.INT=0;

 if(IO_PDR05.bit.P6==1)
 {
 ad_data_tmp=IO_ADCRLH.DATA8;

 if(ad_data_tmp>214){

 IO_PDR00.bit.P0=0; /* a */
 IO_PDR00.bit.P1=0; /* b */
 IO_PDR00.bit.P2=0; /* c */
 (omitted);

 }

 else if(ad_data_tmp>170){

 (omitted)
 }
 else if(IO_PDR05.bit.P6==0)

 {
 ad_data=IO_ADCRLH.DATA8; ← Acquire volume SW A/D value

 if(ad_data>215){

 IO_PDR00.bit.P0=0; /* a */
 IO_PDR00.bit.P1=0; /* b */
 IO_PDR00.bit.P2=0; /* c */

 (omitted)

 if(IO_PCN1.bit.OE==1){

IO_PCSR1 = 56000;
 IO_PDUT1 = 56000/2;

 }

 }
 else if(ad_data>191){
 (omitted)
 }
 }
 }

← Clear A/D conversion interrupt source

← Acquire temperature sensor A/D value

← Separate processing by A/D value

← 7SEG display

← Temperature sensor side

← Volume SW side

← Separate processing by A/D value

← 7SEG display

← Set PPG interval and duty value

← Buzzer output enabled

Figure 4-13 A/D conversion program for volume SW and temperature sensor operation (ADC.C)

 92

AN07-00202-3E

Next, the program for processing the external interrupts from the operation of SW3 and SW5 is

shown in “Figure 4-14 Program for SW3 operation (Ext_int.c)“ and “Figure 4-15 Program for SW5

operation (Ext_int.c)”.

All of LED 1 and 2 and the 7SEG display are turned on by pressing SW3, the buzzer sounds by

pressing SW5, or these actions are stopped.

Figure 4-14 Program for SW3 operation (Ext_int.c)

__interrupt void interrupt_sw3(void)
{

 IO_EIRR0.bit.ER0=0;

 if(IO_PDR05.bit.P6==0)
 {

 IO_PDR02.bit.P3=~IO_PDR02.bit.P3;
 IO_PDR02.bit.P2=~IO_PDR02.bit.P2

 if((IO_PDR02.bit.P3==0)&(IO_PDR02.bit.P2==0))
 {
 IO_PDR00.byte=0x00;
 IO_PDR03.byte=0x00;
 (omitted)
 }
 }
 }

← Clear external interrupt source

← Enable SW3 when on volume SW side

← Turn on LED 1 and 2

← Turn on all 7SEG

__interrupt void interrupt_sw5(void)
{

 IO_EIRR0.bit.ER2=0;

sw5_ad_data=IO_ADCRLH.DATA8;

 if(IO_PDR05.bit.P6==0)
 {

if(sw5_flag==0)
 {

 PPG_initial();
 }

 IO_PCN1.bit.OE=~IO_PCN1.bit.OE;

 }

 else if(IO_PDR05.bit.P6==1){

 (omitted)

IO_PCN1.bit.OE=0;

 (omitted)
 } }

← Clear external interrupt source

← Acquire A/D value

← Enable SW5 when on volume SW side

← PPG timer initialization

← Sound or stop buzzer sound

← When temperature sensor side

← Set buzzer output disabled

Figure 4-15 Program for SW5 operation (Ext_int.c)

 93

AN07-00202-3E

5 Try to use CAN communication
Communication is to send/receive information. There are various types of

communication such as utterance/hearing of spoken words, writing/reading of written letters,

and electrical transmission of information.

Among them, there are various standards for communication based on electrical

transmission. This chapter describes a communication standard called CAN.

CAN is a global standard of the ISO (International Organization for Standardization).

5.1 What is CAN?
CAN stands for Controller Area Network, which is an on-board LAN specification

proposed by Bosch in Germany. It is the most popular on-board control LAN and used in

various parts of a vehicle as shown in “Figure 5-1 Example of on-board CAN application”.

It is now also used not only in vehicles but also in many industries.

Light

Fuel

Air conditioner Instrument panel

Power steering

Door

Door Door

Door

Engine

CAN bus

CAN application

Legend

Figure 5-2 Example of on-board CAN application

 94

AN07-00202-3E

The features of CAN can be classified into the following five points.

1. Multi-master communication

CAN employs the multi-master system in which each node is allowed to start

communication as desired. The timing of a start of communication is occurrence of an

event. The word “event” mentioned here indicates an occasion at which a node needs to

start communication.

CAN avoid conflicts in communication through mediation with node signals if more

than one event occurs on nodes simultaneously. This mediation is called arbitration.

2. Bus-type topology

The CAN topology is the bus type. The maximum number of nodes depends on the

communication speed; in the case of 1M bits/sec, up to 30 nodes are allowed. This is

specified as a regulation.

3. Differential transmission system

Taking account of influence from noise on the transmission paths, CAN employs the

differential transmission system in which the voltage difference between two signal

lines is used to determine “0”/”1”. The signal lines are respectively called CANH and

CANL and the voltage difference between them is used to determine the bus level. The

differential is used to determine logical “0”/”1”. As shown in “Figure 5-3 CAN bus

signal levels”, the bus status of logical “0” is called dominant and the bus status of

logical “1” is called recessive. The communicable distance depends on the

communication speed; in the case of 1M bits/sec, up to 40 m is allowed. This is also

specified by a regulation.

Logical “0”
Dominant

Logical “1”
Recessive

Logical “1”
Recessive

Voltage

Figure 5-3 CAN bus signal levels

 95

AN07-00202-3E

4. High-speed version and low-speed version

There are two CAN specifications with different communication speeds. One of them is

High-speed-CAN. High-speed-CAN is standardized as ISO11898 and its maximum and

minimum communication speeds are 1 Mbits/sec and 125 kbits/sec. The other is

Low-speed-CAN. Low-speed-CAN is standardized as ISO11519 and its maximum

communication rate is 125 kbits/sec. The communication speeds currently popular are, in

order of rates, 500 kbits/sec, 250 kbits/sec, 125 kbits/sec, 83.3 kbits/sec, 33.3 kbits/sec and

so forth.

5. Node control with error counters against errors

CAN supports five types of error detection. Each node has error counters. If an error occurs,

either counter is increased by a specified count. On the contrary, when communication is

successful, the counter is decreased by a specified constant. The communication status of

each node is determined by the values of the error counters. This mechanism serves to limit

communication by node.

5.2 CAN specifications
This section provides brief descriptions of the CAN specifications.

For more information about the specifications, access the web site of the CAN promoting

organization CiA (CAN in Automation) (http://www.can-cia.org/) and make a registration;

you can get the specifications.

5.2.1 CAN frame configurations

This section describes frames that are the fundamental communication unit of CAN.

CAN provides four types of frames, which are respectively named the data frame, remote frame,

error frame, and overload frame as shown in “Figure 5-4 CAN frame configurations”.

 96

http://www.can-cia.org/

AN07-00202-3E

Data field CRC field ACK
field

CRC field ACK
field

Arbitration
field

Control
field

Data frame

Arbitration
field

Control
field Remote frame

Error
delimiter

field
Error flag field

Error frame

Overload
delimiter

field
Overload flag

field Overload frame

Figure 5-4 CAN frame configurations

1. Data frame

Transfer format for data transmit. It consists of seven fields.

Field name Description

Start of frame (SOF) 1-bit field containing “0” that indicates the start of a data frame

Arbitration field Field that determines the priority of the data. This field is also

called the ID field and there are two types of format; standard

format and extended format. The standard format is 12 bits and

extended format is 32 bits.

Control field 6-bit field that indicates the length of the data field.

Data field 0-byte to 8-byte field that stores real data.

CRC field 16-bit field that serves to allow a check of the transmitted frame

validity.

ACK field 2-bit field that is used to notify of successful reception.

End of frame (EOF) 7-bit field containing “1” that indicates the end of the data

frame.

Table 5-1 Data frame structure

 97

AN07-00202-3E

2. Remote frame

Usually, in CAN, a form of transmit of communication information to a node is

generally used, but it is also allowed to request a specific node to transmit specific

data. For this purpose, the remote frame is available.

The remote frame has almost the same configuration with the data frame; it consists

of six fields except the data field. The control field of the remote frame indicates the

length of the data field for the requested data.

 98

AN07-00202-3E

3. Error frame

Transfer format immediately sent on error detection on a node. The error frame

consists of two fields.

Field name Description

Error flag This is a 6 to 12 bit field that indicates the error type.

Error delimiter This is a field where the 8th bit is “1” to indicate the end

of the error frame.

Table 5-2 Error frame structure

4. Overload frame

Transfer format sent to indicate that the node is in unreceivable status.

Field name Description

Overload flag 6-bit to 12-bit field that indicates the type of overload.

Overload delimiter 8-bit field containing “1” that indicates the end of the

error frame.

Table 5-3 Overload frame structure

 99

AN07-00202-3E

5.2.2 Arbitration

CAN employs the multi-master communication system, so any node can start communication.

But, the number of communication sessions actually allowed on one bus is only one. Each node is

cyclically checking whether the bus is the status of transmission. When there is no transmission on

the bus, communication is started, but if more than one node starts transmission, they conflict.

Against this, CAN performs arbitration to give priority to one with a lower ID for transmission.

This section describes the arbitration.

The arbitration is carried out by comparison between the ID and the bus level by bit as shown in

“Figure 5-5 Operation of the arbitration”. Bit 10 to 7 of Node 1 and Node 2 are the same as the bus

level. This indicates that both Node 1 and Node 2 are transmitting signals. But, Bit 6 of Node 1 is

set to “0” and that of Node 2 is set to “1”. The bus level is “0”, so Node 2 recognizes that the frame

is not of its own communication and stops the transmission immediately. Node 1 keeps on

transmitting. After Node 1 ends its communication, Node 2 resumes transmission.

Arbitration field Control field

Node 1

Node 2

Bus level

Node 1 is the same as the bus level, so Node 2 stops
transmission.

Figure 5-5 Operation of the arbitration

The bus status is determined according to the logical product of IDs, so “0” is prior to “1”. This

means that a lower ID takes priority.

 100

AN07-00202-3E

A practical communication flow shown in “Figure 5-6 Example of arbitration among nodes” is

as described below. First, Node 1 and Node 2 starts transmission simultaneously. The arbitration

results in giving priority to the Node 1 transmission with a lower ID. After Node 1 ends its

transmission, Node 2 resumes transmission.

After that, Node 1 and Node 3 starts transmission simultaneously. The arbitration is also

performed and results in giving priority to the Node 3 transmission. After that, Node 4 starts

transmission as soon as Node 3 ends its transmission. On this occasion, arbitration between Node 1

retransmission and Node 4 transmission is performed. This results in transmission in order of Node

4 to Node 1. That is, setting a lower ID to those of preference allows priorities to be settled for

communication.

The ID is assigned by the command, information, and type of transmit data. The ID settings can

be configured as desired.

Start of
transmission

Completion of
Node 1

transmission

Start of
transmission

Completion of
Node 3

transmission
+

Start of
transmission

Completion of
Node 1

transmission

Completion of
Node 4

transmission

Node 1

Node 2

Node 3

Node 4

Node 1 and Node 2 starts transmission
simultaneously. The arbitration results in giving
priority to the Node 1 transmission. Node 1 ends
its transmission, Node 2 resumes transmission.

Node 1 and Node 3 starts transmission simultaneously. The
arbitration results in giving priority to the Node 3 transmission.
Node 4 starts transmission as soon as Node 3 ends its
transmission. On this occasion, arbitration between Node 1
retransmission and Node 4 transmission is performed and it
results in giving priority to the Node 4 transmission. Node 1 is
allowed to start transmission last.

Figure 5-6 Example of arbitration among nodes

 101

AN07-00202-3E

5.2.3 Error management

CAN error management is defined in its protocol. Five types of error detection and three types

of status are used.

1. Error detection

As shown in “Table 5-4 Description of the error types”, errors that can be detected depends

on whether the node is transmitting or receiving.

Table 5-4 Description of the error types

Error type Transmitting

node

Receiving

node

Description

Bit error
○ －

Detected if there is a difference between the

transmitted data and the bus level.

ACK error
○ －

Detected if an acknowledgement to

transmission cannot be obtained.

Stuff error
－ ○

Detected if bit stuffing is not applied. Bit

stuffing is to set an inverted bit by 5 bits if the

number of successive bits with the same level

is 5 or more. This prevents bits with the same

level from being successive over 6 bits.

CRC error
－ ○

Detected if CRC (cyclic redundancy check)

fails on the received data.

Format error
－ ○

Detected if the received data does not confirm

to any of the frame formats.

2. Statuses

Each node has error counters whose value depends on the status. The error counters of the

nodes are named TEC (transmit error count) and REC (receive error count) intending

transmission and reception. The three statuses are as described below.

Table 5-5 Three statuses

Status Description

Error active The node is normally joining in the bus.

Error passive The node has frequent errors so it is influencing the bus.

Bus off The node is disconnected from the bus. To restore to the bus, the bus needs to

satisfy the restoration condition.

 102

AN07-00202-3E

Transition between the statuses is described below along the example shown in “Figure 5-7

CAN status transition”. The initial status of a node is error active. In this status, occurrence of

errors increases the TEC/REC counters.

If either of the TEC/REC counters comes to 127 or higher, the status of the node changes to

error passive. In this status, the node remains communicable and the values of the counters

decrease whenever a communication session is normally carried out.

When both the TEC/REC counters decrease to 127 or less, the status of the node returns to error

active.

If the TEC counter increases after the node comes to error passive and the count comes to 255

or higher, the status of the node changes to bus off.

If the status of the node becomes bus off, the node cannot be restored to error active unless the

restoration condition that successive 11-bit recessive is received 128 times is satisfied.

Initial status

and

Error active

Reception of successive
11-bit recessive 128 times

or

Error passive

Bus off

TEC: Transmit error counter
REC: Receive error counter

Figure 5-7 CAN status transition

 103

AN07-00202-3E

5.3 Using the microcontroller to perform CAN communication
This section describes how to perform practical CAN communication with the microcontroller.

On the board, as shown in “Figure 5-8 CAN circuit”, the microcontroller is connected with the

CAN transceiver (MAX3058). TX on the microcontroller is used for transmission and RX is used

for reception. Signals transmitted/received are transferred to CAN-High and CAN-Low as the

differential signals on the bus through the CAN transceiver.

GND

Vcc
C11:

0.1μF

GND

GND

Vcc

TXD

RXD

RS

CANH

CANL

SHDN

GND

MB96F356

Vcc

R40:

3.3kΩ

R34:

3.3kΩ

1

2

3

4 5

6

7

8

MAX3058 CN6

1

2
TX

RX
16

17
GND

Vcc

GND

TR1:

DTA144E

TR2:

DTA144E

R37:

120Ω

Common

mode filter

R35:

0Ω

R39:

0Ω
R38:

0Ω

LED6:

SML-210LT

3

GND

L1:

ZJYS81R5-

2P24T-G01

LED5:

SML-210LT

(RED)

Figure 5-8 CAN circuit

 104

AN07-00202-3E

The registers used for entire CAN communication control on the microcontroller are as shown

in the following table.

For more information of the registers, refer to the microcontroller hardware manual.

Address Register name Abbr. Access Initial value Remarks

 Base+0x00 CAN control register CTRLR R/W 0x0001

 Base+0x02 CAN status register STATR R, R/W 0x0000 Boff, Ewarn, Epass = Read-only

RxOk,TxOk,LEC = R/W

 Base+0x04 CAN error counter ERRCNT R 0x0000 Read-only

 Base+0x06 CAN bit timing register BTR R/W 0x2301 Writable when

Init(CTRLR)=CCE(CTRLR)="1"

 Base+0x08 CAN interrupt register INTR R 0x0000 Read-only

 Base+0x0A CAN test register TESTR R/W 0x0000 Writable when Test(CTRLR)="1"

"r" is the CAN_RX level value.

 Base+0x0C CAN prescaler extension register BRPER R/W 0x0000 Writable when CCE(CTRLR)="1"

Table 5-4 CAN register list 1

 105

AN07-00202-3E

Address Register name Abbr. Access Initial value Remarks

 Base+0x10 IF1 command request register IF1CREQ R, R/W 0x0001 BUSY bit is R/W in Basic mode,

and read-only in normal mode

Message Number is R/W

 Base+0x12 IF1 command mask register IF1CMSK R/W 0x0000

 Base+0x14 IF1 mask register 1 IF1MSK1 R/W 0xffff

 Base+0x16 IF1 mask register 2 IF1MSK2 R/W 0xffff

 Base+0x18 IF1 arbitration register 1 IF1ARB1 R/W 0x0000

 Base+0x1A IF1 arbitration register 2 IF1ARB2 R/W 0x0000

 Base+0x1C IF1 message control register IF1MCTR R/W 0x0000

 Base+0x20 IF1 data register A1 IF1DTA1 R/W 0x0000

 Base+0x22 IF1 data register A2 IF1DTA2 R/W 0x0000

 Base+0x24 IF1 data register B1 IF1DTB1 R/W 0x0000

 Base+0x26 IF1 data register B2 IF1DTB2 R/W 0x0000

 Base+0x40 IF2 command request register IF2CREQ R, R/W 0x0001 BUSY bit is R/W in Basic mode,

and read-only in normal mode

Message Number is R/W

 Base+0x42 IF2 command mask register IF2CMSK R/W 0x0000

 Base+0x44 IF2 mask register 1 IF2MSK1 R/W 0xffff

 Base+0x46 IF2 mask register 2 IF2MSK2 R/W 0xffff

 Base+0x48 IF2 arbitration register 1 IF2ARB1 R/W 0x0000

 Base+0x4A IF2 arbitration register 2 IF2ARB2 R/W 0x0000

 Base+0x4C IF2 message control register IF2MCTR R/W 0x0000

 Base+0x50 IF2 data register A1 IF2DTA1 R/W 0x0000

 Base+0x52 IF2 data register A2 IF2DTA2 R/W 0x0000

 Base+0x54 IF2 data register B1 IF2DTB1 R/W 0x0000

 Base+0x56 IF2 data register B2 IF2DTB2 R/W 0x0000

Table 5-5 CAN register list 2

 106

AN07-00202-3E

Address Register name Abbr. Access Initial value Remarks

 Base+0x80 CAN transmit request register 1 TREQR1 R 0x0000 Read-only

 Base+0x82 CAN transmit request register 2 TREQR2 R 0x0000 Read-only

 Base+0x90 Data update register 1 NEWDT1 R 0x0000 Read-only

 Base+0x92 Data update register 2 NEWDT2 R 0x0000 Read-only

 Base+0xA0 CAN interrupt pending register 1 INTPND1 R 0x0000 Read-only

 Base+0xA2 CAN interrupt pending register 2 INTPND2 R 0x0000 Read-only

 Base+0xB0 CAN message valid register 1 MSGVAL1 R 0x0000 Read-only

 Base+0xB2 CAN message valid register 2 MSGVAL2 R 0x0000 Read-only

Table 5-6 CAN register list 3

 107

AN07-00202-3E

The steps for initializing CAN in the sample project are introduced simply in the following

diagram.

Set CAN interrupt level and port to use

Function: C_CAN_1_ICR_And_Port()

Set CAN baud rate

Function: C_CAN_1_Baudrate()

Set transmit message buffer

Function: init_CAN_1_Tx();

Set receive message buffer

Function: init_CAN_1_Rx();

Figure 5-9 Initializing CAN

 108

AN07-00202-3E

5.4 Understanding and running the program for CAN
communication

This section provides descriptions of the sample program that can serve for practical CAN

communication.

5.4.1 CAN communication configuration

“Table 5-7 CAN communication conditions of the sample program” shows the CAN

communication conditions of the sample program.

Condition Value

Communication speed 250 Kbps

CAN clock frequency 16 MHz

Bit time (NBT) 16

Sample point 81.3%

Sync. jump width (SJW) 2

Sample count (SAM) 1

Data length 8 bytes

Table 5-7 CAN communication conditions of the sample program

 109

AN07-00202-3E

“Table 5-8 CAN message IDs in the sample program” provides a description of the message IDs

used for CAN communication.

ID Description Communication

direction

0x101 Motor operation start/stop command Receive

0x102 Motor operation rotation speed/Rotation

direction/Brake command

Receive

0x103 Temperature sensor measurement command Receive

0x201 Motor rotation information Transmit

0x202 Temperature sensor information Transmit

Table 5-8 CAN message IDs in the sample program

Details of the IDs are as shown below.

1. ID: 0x101

Motor operation instruction byte 0
Motor rotation direction

Motor rotation speed

Reserved
Reserved

A/D maximum value

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

Field name Setting value Remarks

Motor operation

command

0: Stop 1: Start －

Motor rotation

direction

0: Clockwise 1: Counterclockwise －

Motor rotation speed 0 to 65535

A/D maximum value 0 to 65535

The motor rotation speed and A/D

maximum value are used for

conversion of the speed to a

percentage of 0% to 100%.

2. ID: 0x102

Motor rotation direction
Brake application

Reserved
Reserved

A/D maximum value

Motor rotation speed

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

 110

AN07-00202-3E

Field name Setting value Remarks

Motor rotation

direction

0: Clockwise 1: Counterclockwise －

Brake application 0: Brake released 1: Brake applied －

Motor rotation speed 0 to 65535

A/D maximum value 0 to 65535

The speed is converted to between 0

and 100% using the motor rotation

speed and A/D maximum value.

3. ID: 0x103

Field name Setting value Remarks

Temperature

measurement

command

0: Start 1: Stop －

4. ID: 0x201

Field name Setting value Remarks

Motor rotation

direction information

0: Clockwise 1: Counterclockwise －

Brake application

information

0: Brake released 1: Brake applied －

Motor rotation speed

information

0 to 65535

A/D maximum value

information

0 to 65535

The motor rotation speed and

A/D maximum value are used for

conversion of the speed to a

percentage of 0% to 100%.

Motor rotation direction databyte 0
Brake application information

Motor rotation speed
information

A/D maximum value
information

byte 1
byte 2
byte 3
byte 4

Reserved
byte 5
byte 6
byte 7 Reserved

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

Temperature

Reserved

Reserved
Reserved
Reserved
Reserved
Reserved

Reserved

 111

AN07-00202-3E

5. ID: 0x202

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

Temperature information

Reserved

Reserved
Reserved
Reserved
Reserved
Reserved

Reserved

Field name Setting value Remarks

Temperature

information

0 to 50 －

 112

AN07-00202-3E

5.4.2 Sample program sequence

The flowcharts of the sample program are shown in the following diagrams. First, the internal

operating clock of the microcontroller is initialized. Next, the port output for driving the LED is

initialized. After this, the A/D converter, external interrupts, CAN, and reload timer are initialized.

When an external interrupt occurs due to switch input, CAN transmission and reception (primarily

motor control) starts. The reload timer generates interrupts at a fixed interval, which start the A/D

converter. The A/D conversion result (used as control data for the motor rotation speed) is then sent

via CAN from within the interrupt processing routine for A/D conversion completed.

Clock initialization

Start

Port initialization

A/D converter initialization

External interrupts initialization

CAN initialization

Remote timer initialization

Infinite loop
Display LED

External interrupt processing

(SW3, SW5)

Reload timer interrupt processing

A/D interrupt processing

CAN interrupt processing

Figure 5-10 CAN communication flowchart

 113

AN07-00202-3E

SW3 external interrupt processing

Clear interrupt source of external interrupt 0

Update CAN MSG and

send CAN MSG

(motor run/stop)

Figure 5-11 SW3 (external interrupt 0) flowchart

SW5 external interrupt processing

Clear interrupt source of external interrupt 2

Update CAN MSG and send CAN

MSG (brake/resume)

If pressed for a long time, issue the

temperature measurement mode

command.

Figure 5-12 SW5 (external interrupt 2) flowchart

 114

AN07-00202-3E

Reload timer interrupt processing

Clear interrupt source

Activate A/D converter

Figure 5-13 the reload timer interrupt flowchart

A/D interrupt processing

Clear interrupt source

Update CAN MSG and

send CAN MSG (rotation

speed)

Check SW4 input level

and determine motor

rotation direction

Figure 5-14 the A/D converter interrupt flowchart

 115

AN07-00202-3E

CAN interrupt processing

Error processing

Clear error flag

Data send/receive post-processing

Clear send/receive flag

Interrupt source

determination

Error

No error

Figure 5-15 the CAN interrupt flowchart

Check the following folder in the sample program. This folder contains several files. First try

opening the Main.c file in ¥bits pot_white_SampleProgram¥CAN¥Src.

 116

AN07-00202-3E

Main.c:

The main function initializes each peripheral function and then enters an infinite loop that

updates the LED display.

void main(void)
{

 __set_il(7); // interrupt priority "level 7"
 __EI(); // enable interrupt

 set_clock(&Clock_cfg); // set clock

 Port_Init(); // Port Initial

 AD0_Init(); // AD initial

 C_CAN_1_Driver(); // CAN initial

 Ext_Int_Init(); // Ext Int initial

 set_reload_timer_1(&Reload_timer_1_init); // set reload timer 1 to trigger CAN

 while(1)

 {
 __wait_nop();
 LED_display();
 __wait_nop();
 }
}

Initialization of each

peripheral function

← LED display

 117

AN07-00202-3E

C_CAN_1_Driver_1.c：

The following CAN initialization is performed in C_CAN_1_Driver_1.c.

void C_CAN_1_Driver(void)
{
/* initial ICR port baudrate of CAN */
 C_CAN_1_ICR_And_Port();
 C_CAN_1_Baudrate();

/* initial CAN TX and RX in other C file (C_CAN_0_driver_2.c)*/
 init_CAN_1_Tx();
 init_CAN_1_Rx();
}
/**************** Function definition *********************/
static void C_CAN_1_ICR_And_Port(void)
{
 IO_ICR=0x2006; // CAN0 TX/RX/Error status Int level set ICR_IX=32, ICR_IL=6
 IO_CAN1.COER1.byte=0x01; // port for CAN Tx is enabled*/
 IO_PIER04.bit.IE2=0x01; // enable digital input (RX0)
}

/**************** Function definition *********************/
static void C_CAN_1_Baudrate(void)
{
/************** CTRLR for baudrate setting *****************************/
 IO_CAN1.CTRLR1.word = 0x0041; // CCE=1 Init=1 for BTR and BRPER setting
 IO_CAN1.BTR1.bit.BRP = ((CAN1_Prescale-0x01)&0x003F); // to get Lower 6 bit
 IO_CAN1.BRPER1.bit.BRPE = ((CAN1_Prescale&0x03C0)/0x40); // to get Higher 4 bit

/************** bit timing setting *****************************/
 IO_CAN1.BTR1.bit.TSEG1 = CAN1_TSeg1-0x01;
 IO_CAN1.BTR1.bit.TSEG2 = CAN1_TSeg2-0x01;
 IO_CAN1.BTR1.bit.SJW = CAN1_SJW-0x01;

/***************finish CAN baudrate initial********************/
 IO_CAN1.CTRLR1.word = 0x0001; // CCE=0 Init=1-->over bit timing setting
}

← Call CAN transmit buffer configuration function
← Call CAN receive buffer configuration function

↓ CAN interrupt level setting and port Initialization

↓ CAN baud rate settings

 118

AN07-00202-3E

C_CAN_1_Driver_2.c：

The CAN transmit and receive buffers are initialized in C_CAN_1_Driver_2.c.

/***
 * Tx0 initial step:
 1,set IF registor(CMSK,MSK,ARB,Control,Data)
 2,wait transmit RFx to message RAM
***/
void init_CAN_1_Tx(void)
{
/*MSK select*/
 IO_CAN1.IF1CMSK1.word=0x00F7; /*WR/RD=1 Mask=1 Arb=1 Control=1
 CIP=0 TxRqst/NewDat=1 DataA=1 DataB=1*/
/*MSK Data*/
 IO_CAN1.IF1MSK1.lword=0xFFFC0000; /*MXtd=1 MDir=1 res=1 MID28-MID18=1
 MID17-MID0=0*/

/*MCTR*/
 IO_CAN1.IF1MCTR1.word=0x1888; /*NewDat=Nouse MsgLst=0 IntPnd=Nouse
 UMask=1 TxIE=1 RxIE=0 RmtEn=0
 TxRqst=0(Nouse) EoB=1 DLC=8*/

/*CTRLR*/
 IO_CAN1.CTRLR1.word=0x000B; /*Test=0 CCE=0 DAR=0 EIE=1 SIE=0 IE=1 Init=1*/

}

/***
 * Rx0 initial step:
 1,set IF registor(CMSK,MSK,ARB,Control,Data)
 2,transmit RFx to message RAM
 3,Init = 0 enable CAN macro
***/
void init_CAN_1_Rx(void)
{
/*MSK select*/
 IO_CAN1.IF2CMSK1.word=0x00F0; /*WR/RD=1 Mask=1 Arb=1 Control=1
 CIP=0 TxRqst/NewDat=0 DataA=0 DataB=0*/
/*MSK Data*/
 IO_CAN1.IF2MSK1.lword=0xFFFC0000; /*MXtd=1 MDir=1 res=1 MID28-MID18 all=1
 MID17-MID0 all=0*/
/*Arb Data*/
 IO_CAN1.IF2ARB1.lword=0x88040000; /*MsgVal=1 Xtd=0 Dir=0 ID(28-18)=0x201*/

/*MCTR*/
 IO_CAN1.IF2MCTR1.word=0x1488; /*NewDat=Nouse MsgLst=0 IntPnd=Nouse
 UMask=1 TxIE=0 RxIE=1 RmtEn=0
 TxRqst=Nouse EoB=1 DLC=8*/
/*CTRLR*/
 IO_CAN1.CTRLR1.word=0x000B; /*Test=0 CCE=0 DAR=0 EIE=1 SIE=0 IE=1 Init=1*/

/*CREQ*/
 IO_CAN1.IF2CREQ1.word=0x0004; /*transmit IFx to message RAM
 use buffer4*/
 /* for buffer5 */
/*Arb Data*/
 IO_CAN1.IF2ARB1.lword=0x88080000; /*MsgVal=1 Xtd=0 Dir=0 ID(28-18)=0x202*/

/*CREQ*/
 IO_CAN1.IF2CREQ1.word=0x0005; /*transmit IFx to message RAM use buffer5*/

 IO_CAN1.CTRLR1.bit.INIT = 0; /*enable CAN controller*/
}

↓ CAN receive buffer settings

↓ CAN transmit buffer settings

 119

AN07-00202-3E

C_CAN_1_Int.c：

CAN interrupt processing is performed in C_CAN_1_Int.c. First, the status of CAN

communication errors is checked by the State_judge_1() function. If an error has occurred,

recovery processing is performed. If there are no errors, the transmission and reception

post-processing is performed by the TxRx_Judge_1() function. (For example, the transmission

complete flag is cleared or the receive data is saved)

/** judge state only when INTR==0x8000 **/
static void State_judge_1(void)
{
 if(IO_CAN1.STATR1.bit.BOFF==0x01) // bus off
 {
 Error_State_1=0x01;

 /*Restart bus*/
 IO_CAN1.CTRLR1.bit.INIT = 0; // enable CAN controller
 while((IO_CAN1.ERRCNT1.bit.TEC!=0)||(IO_CAN1.ERRCNT1.bit.REC!=0));

// see if recovered
 }
 if(IO_CAN1.STATR1.bit.EWARN==0x01) // error warning
 {
 Error_State_1=0x02;
 }
 if(!((IO_CAN1.STATR1.bit.BOFF)|(IO_CAN1.STATR1.bit.EWARN)|(IO_CAN1.STATR1.bit.EPASS)))

 // error active
 {
 Error_State_1=0x03; // error active
 }
}

/** judge Tx or Rx interrupt **/
static void TxRx_Judge_1(void)
{
 MsgNbr1=IO_CAN1.INTR1; // stor MsgNbr

 if(IO_CAN1.STATR1.bit.TXOK==0x01) // if TxOK
 {
 IO_CAN1.STATR1.bit.TXOK=0x00; // clear TxOK flag

 /* for clear Tx intPnd */
 IO_CAN1.IF1MCTR1.word=0x0888; //NEWDAT=0 MSGLST=0 INTPND=0 UMASK=0
 //TXIE=1 RXIE=0 RMTEN=0 TXRQST=0 EOB=1 DLC=8

 IO_CAN1.IF1CMSK1.word=0x0090; // WRRD=1 MASK=0 ARB=0 CONTROL=1
 // CIP=0 TXREQ=0 DTAA/B=0
 IO_CAN1.IF1CREQ1.bit.MSGN=MsgNbr1; // IF->RAM

 //IO_CAN0.IF1CMSK0.word=0x0010;
 //IO_CAN0.IF1CREQ0.bit.MSGN=MsgNbr0;

 }
 else if(IO_CAN1.STATR1.bit.RXOK==0x01) // if RxOK
 {
 IO_CAN1.STATR1.bit.RXOK=0x00; // clear RxOK flag

 /*fetch data from msg RAM*/
 IO_CAN1.IF2CMSK1.word=0x007F; /*WR/RD=0 Mask=1 Arb=1 Control=1
 CIP=1 TxRqst/NewDat=1 DataA=1 DataB=1*/

 IO_CAN1.IF2CREQ1.bit.MSGN=MsgNbr1; // transmit msgRAM to IF

↓ CAN transmit/receive processing

↓ Check whether or not an error occurred during CAN communication

 120

AN07-00202-3E

 if(IO_CAN1.IF2MCTR1.bit.MSGLST==0x01)
 {
 __wait_nop(); // mag lost
 IO_CAN1.IF2MCTR1.word=0x1488; // NewDat=0 MSGLST=0 INTPND=0 UMSK=1 TXIE=0
 // RXIE=1 RMTEN=0 TXRQST=0 EOB=1
 IO_CAN1.IF2CMSK1.word=0x0090; // WRRD=1 CONTROL=1 other=0
 // for clear MSGLST
 IO_CAN1.IF2CREQ1.bit.MSGN=MsgNbr1;

 }
 else
 {
 /*ID(28-18)=0x201*/
 if((IO_CAN1.IF2ARB1.lword&0x1FFC0000)==0x08040000)
 {
 __wait_nop();
 CAN_Rx1_data0_ID_201.word=IO_CAN1.IF2DTA11; // save data from buffer to RAM
 CAN_Rx1_data1_ID_201.word=IO_CAN1.IF2DTA21; // save data from buffer to RAM
 CAN_Rx1_data2_ID_201.word=IO_CAN1.IF2DTB11; // save data from buffer to RAM
 CAN_Rx1_data3_ID_201.word=IO_CAN1.IF2DTB21; // save data from buffer to RAM

 CAN_RX1_data_ID_201_Received=0x01; // set received flag
 __wait_nop();
 }

 /*ID(28-18)=0x202*/
 else if((IO_CAN1.IF2ARB1.lword&0x1FFC0000)==0x08080000)
 {
 __wait_nop();
 CAN_Rx1_data0_ID_202.word=IO_CAN1.IF2DTA11; // save data from buffer to RAM
 CAN_Rx1_data1_ID_202.word=IO_CAN1.IF2DTA21; // save data from buffer to RAM
 CAN_Rx1_data2_ID_202.word=IO_CAN1.IF2DTB11; // save data from buffer to RAM
 CAN_Rx1_data3_ID_202.word=IO_CAN1.IF2DTB21; // save data from buffer to RAM

 CAN_RX1_data_ID_202_Received=0x01; // set received flag
 __wait_nop();
 }
 else
 {
 __wait_nop();
 __wait_nop();
 }
 }
 }
}

 121

AN07-00202-3E

6 Try to use LIN communication

Communication is to send/receive information. There are, in fact, various communications

formats, such as transmission by people talking, letters written in script, and electronic

communications, etc.

Among these, there are various plans for communications using electricity. This chapter explains

communications in a standard called LIN.

6.1 What is LIN?

LIN is an acronym for Local Interconnect Network, and is a type of communications protocol for

vehicle-mounted LAN. The LIN consortium was proposed in 1999 with the objective of enabling

a less expensive configuration than CAN, which is the most widespread control system

vehicle-mounted LAN. Thereafter, after several version upgrades, LIN2.0, which has added

diagnostic and other functions, was launched in 2003. Further, in 2006, the version was upgraded

to LIN2.1.

This section explains LIN applications. Concomitant with multi-function vehicles, the

existence of a network in vehicles also became indispensable. Currently, vehicle-mounted LANs

are broadly divided into two classifications: control systems, which are concerned with motoring

and the vehicle body, and information systems, which connect devices such as the satellite

navigation system and audio, and so different LANs are used depending on the application. In

particular, vehicle body devices such as electric mirrors and power windows, which are classified

as body systems, do not require such fast or detailed control. Consequently, they are also

inexpensive. This is where LIN is used.

 122

AN07-00202-3E

Seats
 Power seat and motor control
 Passenger detection
 Heater
 Switch control

 Back mirror
 Switch control

 Wipers
Accessories

 Rear blinkers
 Rear wiper
 Rear window heater
Rear

 Rear panel

AC
 Motor control

 Mirror control
 Power windows
 Switch control
Doors

Figure 6-1 Example of vehicle LIN applications

The characteristics of LIN used in the way described above, are collated and introduced in the

following five points.

1. Single master communication

LIN has two types of communication nodes. One is the “master” (sender).This controls the

start of all communications. The other is the slave (recipient).The slave responds to commands

sent by the master. LIN communication must start from the master, and cannot be started by a

slave. Further, the LIN communication mode designated as the master is pre-determined. This

format is called a “single master format”.

2. A maximum of 15 slave nodes can be connected using bus wiring.

The LIN network configuration (topology) is a bus. With single master LINs, the slaves

communicate only when they receive commands from the master, so there is no conflict of

signals in the bus. A maximum of 15 slave nodes can be connected to one master.

 123

AN07-00202-3E

Master

(Door)

Communications cannot be
started from the slave!!

Communications can be
started from the master

Slave1 Slave2 Slave3 Slave15

(Mirror) (Door Lock) (Windows)

Up to 15 slaves max. can be connected

Transceiver IC (Electronic component for sending and
receiving data)

Figure 6-2 Main LIN network configuration

3. Wiring is completed using a single wire

The on-board ECUs are connected to the LIN network via transceiver ICs (electronic

components that send and receive data), and each ECU is connected on the bus from the

master to a slave. An ordinary single metal wire is used as the bus cable. CAN combines two

opposing metal wires to make one twisted pair cable. FlexRay uses two twisted pair cables.

Consequently, LIN has the advantage of using a single cable for numerous network wires,

unlike CAN and FlexRay, which use twisted pair cables.

The communications distance is 40m max. LIN can be used in combination with CAN, and in

such cases, CAN is most frequently used as the core network, and LIN is used as the branch

network.

4. The baud rate is 20kbps max.

 L The baud rate according to LIN specifications is within the range 1 to 20kbps. Practically,

the baud rate of LINs used as LANs depends on the individual vehicle manufacturer’s system

 124

AN07-00202-3E

specifications, but generally one of the following is used: 2,400kbps, 9,600kbps, or

19,200kbps.

5. Communications errors are detected only, and subsequent processing depends on the

application

 With LIN, communications errors are detected based on information as to whether

transmitting and receiving has been performed successfully. Processing after an error has been

detected, however, is not specified. Here, LIN error processing can be customized according to

the application. CAN and FlexRay management of the communications status depends on the

counter value, which is called the error counter, is featured by the specifications, but in LIN, if

an error occurs, simple error processing is possible, in which LIN merely waits for the next

command.

6.2 LIN specifications

This section explains briefly the LIN specifications.

For detailed specifications, access the LIN consortium website (http://www.lin-subbus.org/), and

register your name and e-mail address to get a specifications.

6.2.1 Lin frame configuration

This section explains frames, which is the basic unit of LIN communication.

LIN frames are configured using “headers” and “responses”. As shown in “Figure 6-3 LIN

communication flow”, the basic communications flow is a procedure in which the master sends

headers to the slaves, and the slaves implement processing according to the contents of the

headers received, and then send a response to the master.

 125

http://www.lin-subbus.org/

AN07-00202-3E

Figure 6-3 LIN communication flow

Further, headers are configured using three fields: Synch break (Break), Synch field (Sync byte),

and ID field (Identifier), and responses are configured using two fields: Data field and Checksum

field.

Figure 6-4 LIN frame configuration

 126

AN07-00202-3E

1. Break

Break, which are in the header fields, are variable-length fields that indicate the start of a

new frame. They comprise 13 to 16 “0” bits (fixed value zero) min. The general frame

length is 13 bits.

2. Sync Byte

Sync byte, which follow on from breaks, are 10-bit fixed-length fields that synchronize

the master and the slaves. Sync byte configurations comprise 1 starter bit (“0”), 8 data

bits, and 1 stop bit (“1”).The 8-bit data bit has the fixed value “0x55” (which is expressed

as “0x01010101” in binary).If the slave receives the 0x55 in the synch byte send by the

master normally, the master and slave are synchronized.

3. ID field

The “ID field”, which is the final header field and comes after the synchronous byte, is a

10-bit fixed-length field that specifies the frame type and objective. ID fields have values

from “0” to “63” (6 bits).This ID field is also used by the master to specify individual

slaves. Slaves judge what type of frame has been sent and if it was intended for them

according to the ID field sent by the master, and send responses to the master accordingly.

Further, the ID field has a 2-bit parity bit following the “0” to “63” (6 bits).This is

bracketed by a 1-bit starter bit and 1-bit stop bit in the same way as the synchronous byte,

so overall the field is 10 bits in length.

4. Data field

The “data”, which is in the response header, is a variable-length field that literally

transfers data. The data in the number of bytes that has been predetermined (1 to 8 bytes)

is sent. As there is a 1-bit start bit and 1-bit stop bit bracketing the 1-byte data in the same

way as the header synchronous byte, 1 byte of data is configured from 10 bits.

Consequently, the total data field length is “number of bytes x 10 bites”.

5. Checksum field

The “checksum”, which follows the data, is a 10-bit fixed-length field for checking data.

The data recipient checks whether there is an error in the data by comparing the data

received with the checksum. The checksum field length is also 10 bits: a start bit and a

stop bit added to the 8-bit checksum in the same way as the synchronous byte.

 127

AN07-00202-3E

6.3 LIN communication flow

 In general LIN communication, one master communicates with numerous slaves. LINs, which

adopt a bus topology, connect the master and all the slaves using a single wire, so header

electrical signals sent by the master are transmitted by the wire to all the slaves. The slaves check

the frame ID, and if the header is addressed to them, sent a response to the master according to

the content received. If the header received is addressed to another slave, it is ignored. In this

way, 1-to-1 communication between the master and each slave is achieved.

This section explains the actual trading of communications. Currently, functions are allocated to

each of the slaves from 1 to 15.The master first communicates with slave 1 and turns the motor

((1) in Figure 6-6-5 Main LIN network configuration and Figure 6-6-6 Example of

communication sequence between the master and slaves during normal communication), and

next acquires sensor information by communicating with slave 3. ((2) in “Figure 6-6-5 Main LIN

network configuration” and Figure 6-6-6 Example of communication sequence between the

master and slaves during normal communication.) Thereafter, the motor is turned by

communications with slave 2 ((3) in Figure 6-5 Main LIN network configuration and Figure 6-6

Communications sequence between master and slave during normal communications).The

master acquires sensor information from slave 3 again ((4) in Figure 6-5 Main LIN network

configuration and Figure 6-6 Communications sequence between master and slave during normal

communications), and finally turns ON the lamp by communicating with slave 15 ((5) in Figure

5-5 Main LIN network configuration and Figure 6- 6 Communications sequence between master

and slave during normal communications).In this chain of communications, communications

between the master and slaves 2 and 3 are contiguous, and the master processes the motor

turning by communicating with slave 2 using sensor information acquired by communicating

with slave 3 first. In this way, during actual communications the master and multiple slaves

repeatedly communicate on a 1-to-1 basis.

 128

AN07-00202-3E

Master

Figure 6-6-5 Main LIN network configuration

Slave 1 Slave 2 Slave 3 Slave 15

:Transceiver IC (electronic component for

sending and receiving data)

Sensor

Motor

Acquiring

sensor

information

Slave 2 Slave 1 Master

All communications

start from the master

Motor

operation

Motor

operation

Motor

Slave 3

Acquiring

sensor

information

Slave 15

Lamp

ON

Figure 6-6-6 Example of communication sequence between the master and slaves during normal

communication

 129

AN07-00202-3E

6.4 Communication between master and slave if an error occurs

 LIN error processing is not determined by the protocols, and so depends on the application.

Consequently, during design, it is necessary to consider the error detection methods and the

process after the error has been processed. As this is not determined by the protocols in the LIN

specifications either, however, examples of system design if an error occurs are introduced in the

chapter “Status Management”. In the examples introduced, errors are managed by slaves

reporting their own status to the master. This mechanism is described below.

 The basic master operation is merely to send the header to the next slave when communications

with the current slave have ended. On the other hand, the slave operation is to perform error

checking when a header is received and when a response is sent. Checksums and other checks

are implemented during reception. When sending, checks are performed by comparing the sent

data and the bus data that performs the monitoring. In this way, the slave identifies its own status,

and inserts the results into the response that is sent to the master. The master identifies the slave

status from the response, and if there is a nonconformance, initializes the slave. In this way, the

error status is completely cleared.

 130

AN07-00202-3E

6.5 LIN communication by using the microcontroller

 This section describes how to perform practical LIN communication with the microcontroller.

 On the board, as shown in “Figure 6-7 LIN circuit”, the microcontroller is connected with the

LIN transceiver IC (TJA1020T). On the microcontroller, SOT is used for transmission and SIN is

used for reception, and SCK controls the transceiver IC as a port. Signals transmitted/received

pass onto the bus through the LIN transceiver.

1 2 3

VCC5

CN7
EXT PWR

GND
U1:

MB96F356

INH

TXD

DRXD

NSLP

NWAKE

BAT

LIN

U3:
TJA1020T

SIN

SOT

SCK GND

GND

GND

C12:
0.1uF

4

1

2

8 7

3

6

5
C13:
1nF

R41:
5.1kΩ

CN835

34

36

VCC5

R43:
3.3kΩ

LED7:
SML-210LT

GND

TR3:
DTA144E

VCC5

R44:
3.3kΩ LED8:

SML-210LT

GND

TR4:
DTA144E

JP1

LIN

GND

VCC5

R4２:
1kΩ

D2:
1SR145

Figure 6-7 LIN circuit

 The registers used for entire LIN communication control on the microcontroller are as shown in

“Figure 6-8 Entire LIN communication control register”.

A description of the registers and their setting values in the sample program are as described in “

Table 6-1 Description of the entire LIN communication control registers and setting values”. For

more information of the registers, refer to the microcontroller hardware manual.

 131

AN07-00202-3E

Serial control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SCR PEN P SBL CL AD CRE RXE TXE

Serial mode register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SMR MD1 MD0 OTO EXT REST UPCL SCKE SOE

LIN-UART serial status register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SSR PE ORE FRE RDRF TDRE BDS RIE TIE

LIN-UART receive data register/transmit data register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

RDR/TDR

LIN-UART extended status control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ESCR LBIE LBD LBL1 LBL0 SOPE SIOP CCO SCES

LIN-UART extended communication control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ECCR INV LBR MS SCDE SSM res RBI TBI

LIN-UART baud rate generator register 1

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

BGR1 ‐

LIN-UART baud rate generator register 0

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

BGR0

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ESIR TDRE RDRF RBI AICD

Figure 6-8 Entire LIN communication control register

 132

AN07-00202-3E

Table 6-1 Description of the entire LIN communication control registers and setting values

Register name Setting value [function] Description

SCR_PEN 0 [No parity] Parity enable bit

SCR_P 0 [Even parity] Parity selection bit

SCR_SBL 0 [1 bit] Stop bit length selection bit

SCR_CL 1 [8-bit] Data length selection bit

SCR_AD 0 [Data frame] Address/data selection bit

SCR_CRE 1 [Flag clear] Receive error flag clear bit

SCR_RXE 1 [Receive enabled] Receive enable bit

SCR_TXE 1 [Transmit enabled] Transmit enable bit

SMR_MD1 1 [Mode 3]

SMR_MD0 1 (Asynchronous LIN mode)
Operation mode selection bit

SMR_OTO 0 [Use external clock] One-to-one external clock selection bit

SMR_EXT 0 [Use baud rate generator] External clock selection bit

SMR_REST 0 Transmit reload counter restart bit

SMR_UPCL
1 [LIN-UART reset] USART programmable clear bit

(software reset)

SMR_SCKE
0 [General-purpose I/O port or
LIN-UART clock input pin]

Serial clock output enable bit

SMR_SOE 1 [LIN-UART serial data output pin] Serial data output enable bit

SSR_BDS 0 [LSB first (send from least significant bit)] Transfer direction selection bit

SSR_RIE 1 [Receive interrupt enabled] Receive interrupt request enable bit

SSR_TIE 0 [Transmit interrupt disabled] Transmit interrupt request enable bit

ESCR_LBIE
0 [LIN synch break detection interrupt
disabled]

LIN synch break detection interrupt enable bit

ESCR_LBD 0 [LIN synch break detection clear flag] LIN synch break detection flag

ESCR_LBL1 0

ESCR_LBL0 0 [13-bit length]
LIN synch break length selection bit

ESCR_SOPE 0 [Serial output pin access disabled] Serial output pin direct access enable

ESCR_SIOP 0 Serial input/output pin direct access

ESCR_CC0 0 Continuous clock output enable bit

ESCR_SCES 0 Serial clock edge selection bit

ECCR_LBR 0 [Do not generated LIN synch break] LIN synch break generate bit

ECCR_MS 0 Master/slave mode selection bit

ECCR_SCDE 0 Serial clock delay enable bit

ECCR_SSM 0 Start/stop bit mode enable bit

BGR_BGR1 0x16 (When set to 9600bps) Baud rate generator 1

BGR_BGR0 0x66 (When set to 9600bps) Baud rate generator 0

 133

AN07-00202-3E

6.6 Understanding and running the program for LIN communication
 An explanation of the sample program is given as an example of a program that actually performs

LIN communication. In the bits pot LIN communication, the starter kit operates as the master and

the bits pot yellow operates as the slave.

6.6.1 LIN communication configuration

The LIN communication parameters used by the sample program are summarized in “Table 6-2

LIN communication conditions of the sample program”.

Table 6-2 LIN communication conditions of the sample program

Condition Value

Communication speed 2400/9600 (default value)/19200bps

Peripheral clock frequency 16MHz

Synch break length 13 bits (Receive is fixed to detect 11

bits)

Data length 8 bits

Data bit format LSB first

Data byte count 8 bytes

The message IDs used in LIN communication in “Table 6-3 LIN message IDs in the sample

program” are described next.

Table 6-3 LIN message IDs in the sample program

ID Description
Data communication

direction

0x00
Temperature measurement command/temperature display

command
white → yellow

0x01 Temperature sensor information
white → yellow

white ← yellow

0x02
Buzzer output command/volume value measurement

command
white → yellow

0x03 Volume SW (VR) information
white → yellow

white ← yellow

0x04 LED on/off change command– count up/count down white → yellow

0x05 LED value
white → yellow

white ← yellow

 134

AN07-00202-3E

 Details of the IDs are as shown below.

1. ID: 0x00

byte 0
Temperature measurement

command

byte 1
A/D value (temperature

sensor information)

byte 2 Reserved

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

Temperature measurement

command
0x55: Start 0x0F: Stop

When SW4 is on the right, 0x55 is sent. This acquires

and displays the temperature information from the bits

pot yellow. When SW4 is on the left, 0x0F is sent. The

temperature information is not displayed.

A/D value (temperature

sensor information)
0 to 255

The temperature sensor information from the starter kit.

The bits pot yellow displays the temperature on the

LED using this A/D value.

2. ID: 0x01

byte 0 Reserved

byte 1 Reserved

byte 2
A/D value (temperature

sensor information)

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

 135

AN07-00202-3E

Field name Setting value Remarks

A/D value

(temperature sensor

information)

0 to 255

The response from the bits pot yellow to the ID 0x00

temperature measurement command. The temperature

sensor information is received as an A/D value and is

displayed on the 7SEG display.

3. ID: 0x02

byte 0
Volume value acquire

command

byte 1 A/D value (VR information)

byte 2 Reserved

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

Volume value acquire

command
0x55: Start 0x0F: Stop

When SW4 is on the right, 0x55 is sent. Acquires the

bits pot yellow volume SW information and outputs the

buzzer sound. When SW4 is on the left, 0x0F is sent.

The buzzer sound is not output.

A/D value (VR

information)
0 to 255

Starter kit volume SW information. The bits pot yellow

outputs the buzzer sound based on this A/D value.

4. ID: 0x03

byte 0 Reserved

byte 1 Reserved

byte 2 A/D value (VR information)

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

 136

AN07-00202-3E

Field name Setting value Remarks

A/D value (VR

information)
0 to 255

The response from the bits pot yellow to the ID 0x02

volume value acquire command. The volume SW

information is received as an A/D value and output to

the buzzer.

5. ID: 0x04

byte 0 LED on/off change command

byte 1 Reserved

byte 2 Reserved

byte 3 LED value

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

LED on/off change

command
0x55: Start 0x0F: Stop

The LED on/off change command from the starter kit.

When SW4 is on the left, 0x55 is sent. In addition, if a

LED value other than 0xFF is received, the received

LED value is displayed by the starter kit LEDs.

LED value 0 to 7 (Or 0xFF)
The value of the LED displayed by the starter kit.

When 0xFF is sent, the data is invalid.

6. ID: 0x05

byte 0 Reserved

byte 1 Reserved

byte 2 Reserved

byte 3 LED value

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

LED value 0 to 7
The value of the LED displayed by the bits pot yellow.

If 0xFF is sent, the data is invalid.

 137

AN07-00202-3E

6.6.2 Sample program sequence

 The flowcharts for the LIN communication in the sample program are shown in “Figure 6-9 LIN

communication flowchart (main routine)” and “Figure 6-10 LIN communication flowchart

(interrupt routine: USART receive interrupt)”. First, the microcontroller is initialized, the

LIN-USART is initialized, and the timer is initialized. Next, the bus connection processing is

performed as the LIN master, and the schedule is set. After this, the program enters a loop. Within

the loop, headers are sent and responses are sent and received at fixed intervals. Sending of the

synch break, synch field, and ID field headers and sending and receiving of responses is processed

by the LIN-USART receive interrupt. Processing is performed in response to the master ID

(identifier).

Figure 6-9 LIN communication flowchart (main routine)

 138

AN07-00202-3E

Figure 6-10 LIN communication flowchart (interrupt routine: USART receive interrupt)

 139

AN07-00202-3E

Figure 6-11 LIN communication flowchart (data processing by ID)

 140

AN07-00202-3E

 The sample program is explained next. However, the sample program contains sections that are

not used during communication with the bits pot yellow. These sections have been made extensible,

and may be included in programs that meet the LIN specifications and programs that operate as the

slave. However, the operation of these sections has not been completely verified. Please take care if

you use these sections.

The points where this sample program operates in the LIN protocol during LIN communication

are shown below. Because the sample program is the LIN master, the LIN bus connection

processing and schedule registration are performed first.

Figure 6-12 LIN bus initial settings

Parts of the section that sets the LIN ID and sets the schedule is shown below.

In the sample program, one schedule table and eight IDs are used. The IDs that actually use a

response are ID 0x00 to ID 0x05.

typedef enum {

 Schedule1_DATA00 = 0,

 Schedule1_DATA01,

 Schedule1_DATA02,

 Schedule1_DATA03,

 Schedule1_DATA04,

 Schedule1_DATA05,

 Schedule1_DATA06,

 Schedule1_DATA07,

 (omitted)

#define Schedule1Count 8

 (omitted)

__far const l_u8 Schedule1_IdList[Schedule1Count] =

 { ID_00, ID_01, ID_02, ID_03, ID_04, ID_05, ID_06, ID_07 };

void main(void)

← Register 8 IDs

← Register 8 IDs

← Register 8 IDs

 l_ifc_connect(hLIN_NORMAL_WAKEUP);

 l_sch_set(hSchedule1, Schedule1_DATA00);

← LIN bus connection processing

← Set schedule

(omitted)

{

Figure 6-13 ID registration – Lindbmaster.h

 141

AN07-00202-3E

← Register receive response

← Register send response

/* 0 1 2 3 4 5 6 7 8 9 */

/* 0*/ 0, ucDATA01, 0, ucDATA03, 0, ucDATA05, 0, ucDATA07, 0, 0,

 (omitted)

l_u8* __far const LinRxDataPtr[64] = {

/*10*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/* 0*/ ucDATA00, 0, ucDATA02, 0, ucDATA04, 0, ucDATA06, 0, 0, 0,

/* 0 1 2 3 4 5 6 7 8 9 */

l_u8* __far const LinTxDataPtr[64] = {

Figure 6-14 Send and receive response registration – Lindbmsg.h

This sample program operates by processing multiple interrupts, as shown in “Figure 6-15 Points

where the processing of each interrupt is performed”. We will now look at the processing

performed by the sample program for each field of the LIN protocol.

Checksum FieldData FieldID FieldSync ByteSync Break

ID DT DT Check Sum

HEADER

Data reception interrupt

RESPONSE

Data reception interrupt

Sync break interrupt

Input capture interrupt

Data reception interrupt

Data reception interrupt

Figure 6-15 Points where the processing of each interrupt is performed

① Synch break

On synch break, a synch break signal (a low signal for 13 to 16 bits) is sent. In the sample

program, 13 bits are sent. Receive processing is also performed at the same time, and if the

 142

AN07-00202-3E

bus is “0” for 11 bit times or more, a synch break interrupt occurs. When a synch break

interrupt is detected, the synch break interrupt is set to disabled, and processing to

determine whether a synch break was received is performed within l_ifc_rx(data).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6-16 Synch break data setting

Figure 6-17 Synch break interrupt control

__interrupt void _LinUartRx(void)

{

 if ((ssr & 0xE0) != 0) {

 (omitted)

 } else if (IO_UART3_ESCR3_bit_LBD == SET) {

 #if (LIN_MASTER==1)

 IO_UART3_ESCR3_bit_LBD = CLEAR;

(omitted)

}else{

 l_ifc_rx(data);

← Synch break detection

← Clear synch break detection flag

← Error check

15ビット分10

01

00

11

14ビット分

13ビット分

16ビット分

LIN Synch break長選択ビットLBL1LBL0

15ビット分10

01

00

11

14ビット分

13ビット分

16ビット分

LIN Synch break長選択ビットLBL1LBL0

影響なし

LIN Synch break生成ビット

LIN Synch break 生成1

0

LBR

影響なし

LIN Synch break生成ビットLBR

1

0

LIN Synch break 生成Generate LIN synch break

S end data

LIN synch break length selection bits

13 bits long

14 bits long

15 bits long

16 bits long

Send data

LIN synch break generate bit

No effect

← Receive processing

 143

AN07-00202-3E

 144

AN07-00202-3E

The processing for synch break reception, synch field reception, ID reception, DATA

transmission and reception, and WAKEUP transmission are split up according to the status, as

shown in “Figure 6-23 ID receive determination processing”. In the processing to determine

whether a synch break was received, the extended status control register (ESCR) is cleared and the

program enters a state of waiting for reception of the synch field.

 case LIN_TRANSMIT:

(omitted)

 case LIN_DATA_RECEPTION:

(omitted)

 case LIN_ID_RECEPTION:

 (omitted)

case LIN_WAIT_SYNCH_FIELD:

(omitted)

case LIN_MS_WAIT_SYNCH_BREAK:

#if (LINUART_CH==3)

 IO_UART3_ESCR3_byte = 0x00;

(omitted)

ucLinStatus = LIN_WAIT_SYNCH_FIELD;

(omitted)

 case LIN_WAKEUP_TRANSMIT:

(omitted)

 ｝

}

← Wait to receive Synch break

← Clear ESCR register

← Switch to wait to receive

Sync field state

← Transmit DATA FIELD

← Receive DATA FIELD

← Wait to receive ID FIELD

← Wait to receive Synch field

← Transmit WAKEUP state

 switch(ucLinStatus){

{

void l_ifc_rx(l_ifc_handle rx_data)

Figure 6-18 Processing to determine whether synch break was received

 145

AN07-00202-3E

② Synch field

After a synch break is detected, processing is performed to send and receive the synch

field. 0x55 is sent in the synch field. If this data is successfully received by the slave, the

slave becomes synchronized.

0 1 2 3 4 5 6 7STAR T
BIT

STOP
BIT

DATA = 0 x55

First time

8 Tbit

2 Tbi 2Tbi 2Tbi 2 Tbi

Synch field

 Fifth time

Figure 6-19 Synch field interrupt control

The processing to receive the synch field, ID field, and Data field is performed within the

LIN-UART interrupt function _LinUART. If there are no errors when an interrupt occurs

and the interrupt source is not synch break, received processing is performed.

 if ((ssr & 0xE0) != 0) {

(omitted)

} else if (IO_UART3_ESCR3_bit_LBD == SET) {

(omitted)

}else{

 l_ifc_rx(data);

}

}

← Error check

← Check whether or not interrupt

by synch break

← Receive processing

__interrupt void _LinUART (void)

{

 (omitted)

Figure 6-20 Synch field interrupt control

 146

AN07-00202-3E

In “Figure 6-23 ID receive determination processing”, once it has been confirmed that the

data is 0x55, the program enters a state of waiting to receive the ID field and performs ID

send processing.

Figure 6-21 Synch field receive determination processing

 The send data is stored in a register within the send start processing function

l_ifc_tx(l_ifc_handle tx_data) as shown in “Figure 6-23 ID receive determination

processing”.

void l_ifc_rx(l_ifc_handle rx_data)

{

 (omitted)

 case LIN_WAIT_SYNCH_FIELD:

 if (rx_data == SYNCH_FIELD_CHAR) { ← Check if Sync field is 0x55

(omitted)

 ucLinStatus = LIN_ID_RECEPTION;

 l_ifc_tx(ucLinMsScheduleCurrentId);

 (omitted)

← Wait to receive sync field

← Switch to wait to receive ID state

← Transmit ID processing

void l_ifc_tx(l_ifc_handle tx_data)

{

#if (LINUART_CH == 3)

 IO_UART3_RDR3 = tx_data;

 (omitted)

← Set send data in register

Figure 6-22 UART send start processing

 147

AN07-00202-3E

③ ID field

In order to transition to the state of waiting to receive the ID field, the ID receive

determination processing is performed in the normal sequence in the ID receive processing,

as shown in “Figure 6-23 ID receive determination processing”. In the ID receive

determination processing, a judgment is made as to whether the acquired ID is for sending

or for receiving and a parity check is performed. If the ID is for sending, the status is

changed to the send preparation state and the send data is copied to a buffer. If the ID is for

receiving, the status is changed to the DATA receive wait state in preparation for receiving a

response (data) from the slave.

void l_ifc_rx(l_ifc_handle rx_data){

(omitted)

← Wait to receive ID FIELD state case LIN_ID_RECEPTION:

← Store received ID ucCurrentId.byte = rx_data;

← Parity check if(ucCurrentId.fields.parity != ucRightParity[ucCurrentId.fields.id]) {

l_flg_tst(hBIT_ERR); ← Error processing

l_flg_clr(hBIT_ERR);

(omitted)

← If receive ID } else if(LinRxDataPtr[ucCurrentId.fields.id] != 0) {

← DATA receive wait state ucLinStatus = LIN_DATA_RECEPTION;

(omitted)

 vSetLinFreerunTimersCompare(ucRxCount); ← Set free-running timer

← If transmit ID } else if (LinTxDataPtr[ucCurrentId.fields.id] != 0) {

(omitted)

 vLinWordCopy(ucUartTxBuffer, LinTxDataPtr[ucCurrentId.fields.id], ucTxCount);
↓ Copy send data to buffer

← Set free-running timervSetLinFreerunTimersCompare(hTINFRAME_SPACE_IND);

 }

(omitted)

}

}

Figure 6-23 ID receive determination processing

 148

AN07-00202-3E

④ DATA field

This section explains how data is sent and received using the DATA field.

First, for sending DATA, if the ID received using the ID field is the ID for sending, the

vTimeoutCheckTask function as shown in “Figure 6-24 Timeout detection processing” is

called by a free-running timer interrupt. This function is called when the timeout value

configured in the free-running timer is detected, and in this case, the function is called when

the timeout value from receiving the header to sending the response (response space) is

detected.

The vTimeoutCheckTask function is divided into send pre-processing, initialization

processing, etc. depending on the status information. When the status is the send

pre-processing state, the first byte of the data is sent.

void vTimeoutCheckTask(void){

 (omitted)

 if (uiIntDemandCounter == 0) {

 switch (ucLinStatus) {

← Pre-transmit state case LIN_PRETRANSMIT:

← State transition: Transmit DATA FIELD state ucLinStatus = LIN_TRANSMIT;

 ucSaveData = ucUartTxBuffer[0]; ← Transmit data: Acquire 1 byte

← Data transmit processing l_ifc_tx(ucUartTxBuffer[0]);

 (omitted)

 case LIN_UART_INITIAL:

 (omitted)

 case LIN_ID_RECEPTION:

 (omitted)

 case LIN_DATA_RECEPTION:

 (omitted)

 case LIN_TRANSMIT:

 (omitted)

 case LIN_WAIT_SYNCH_FIELD_START:

 (omitted)

}

}

Figure 6-24 Timeout detection processing

 149

AN07-00202-3E

When the first byte of data is sent, a receive interrupt occurs due to receiving the data that

the program itself sent. Therefore, in the same way as the operation for the ID field, the

receive determination processing function _ifc_rx(l_ifc_handle rx_data) is called, and

processing to send the second and subsequent data is performed based on the send state of

the DATA FIELD as shown in “Figure 6-25 DATA send processing”, with this same process

repeated over and over. Because the data byte count is set to 8 in the current LIN

communication, after the 8th bytes of DATA has been sent the Checksum is finally sent and

the send processing finishes.

void l_ifc_rx(l_ifc_handle rx_data){

 switch(ucLinStatus){

← Transmit DATA FIELD state case LIN_TRANSMIT:

← If transmit DATA remains if (ucTxCurrentIndex < ucTxCount){

(omitted)

l_ifc_tx(ucUartTxBuffer[ucTxCurrentIndex]); ← Transmit processing

(omitted)

← If all transmit data has been sent } else if (ucTxCurrentIndex == ucTxCount){

(omitted)

← Transmit checksum processing l_ifc_tx(((unsigned char)~uiTxCheckSum));

(omitted)

}

 case LIN_DATA_RECEPTION:

 (omitted)

 case LIN_ID_RECEPTION:

(omitted)

 case LIN_WAKEUP_TRANSMIT:

 (omitted)

}

}

Figure 6-25 DATA send processing

 150

AN07-00202-3E

The data receive processing is explained next.

If the ID acquired in the ID receive processing is for receiving, the status is changed to the

DATA receive state and the program waits to receive data from the bits pot yellow. If an

interrupt occurs due to receiving data from the bits pot yellow, the receive processing is

performed within the receive processing function l_ifc_rx(data) as shown in “Figure 6-26

DATA receive processing”. For the case of receiving data, the receive processing is

performed by l_ifc_rx(l_ifc_handle rx_data) for each single byte of data received, and once

all 8 bytes of data have been received, the receive success flag is set if there are no

checksum errors and the receive processing finishes.

void l_ifc_rx(l_ifc_handle rx_data){

 switch(ucLinStatus){

 case LIN_TRANSMIT:

(omitted)

← Receive DATA FIELD state case LIN_DATA_RECEPTION:

 if (ucRxCurrentIndex >= ucRxCount) { ← If all data has been received

← If checksum calculation is correct if ((uiRxCheckSum + rx_data) == 0xFF) {

 (omitted)

← Set receive success flag flagsLinTxRx.bit.SucceedReception = SET;

 memcpy(&ucUartRxFixedBuffer[0], &ucUartRxBuffer[0], ucRxCount);
↑ Copy received data (omitted)

← If there is a checksum error } else {

← Error processing l_flg_tst(hCHECKSUM_ERR);

← If there is receive data remaining } else {

ucUartRxBuffer[ucRxCurrentIndex] = rx_data; ← Store receive data in buffer

 (omitted)

 case LIN_ID_RECEPTION:

 (omitted)

 case LIN_WAKEUP_TRANSMIT:

 (omitted)

 }

 }

Figure 6-26 DATA receive processing

 151

AN07-00202-3E

Finally, the vBaseTimeTask function in main.c is for processing each received ID. This function is

called periodically at fixed intervals, and primarily checks whether sending and receiving has

finished. If this function is called when all of the data reception has finished

(flagsLinTxRx.bit.SucceedReception is set), the sub_control function in submain.c as shown in

“Figure 6-27 Submain processing 1” and “Figure 6-28 Submain processing 2” is called as receive

completion processing that performs temperature sensor measurement processing, buzzer output

processing, LED on/off processing, 7SEG display processing, and storage of sent data.

 152

AN07-00202-3E

void sub_control(void){

← Check the state of SW4 (for right side) if(SW4 == SET){

switch (ucCurrentId.fields.id){

← ID: 0x00 case 0x00:

 ad_input2(); ← Start A/D interrupt (Acquire temperature sensor information)

 ucDATA00[0] = 0x55;

 ucDATA00[1] = temp2; ← Transmit temperature sensor information

break;

case 0x01: ← ID: 0x01
← Acquire temperature information from slave LIN_temp_value = ucDATA01[2];

 led_seg2_display(LIN_temp_value); ← Display temperature information on 7SEG

break;

← ID: 0x02 case 0x02:

← Start A/D interrupt (Acquire volume SW information) ad_input0();

 ucDATA02[0] = 0x55;

 ucDATA02[1] = Buzzer0; ← Transmit volume SW information

break;

case 0x03: ← ID: 0x03

 LIN_Buzzer_value = ucDATA03[2]; ← Acquire volume SW data from slave

 buzzer_control(); ← Set PPG timer and output to buzzer

 if(LIN_Buzzer_value == 0){

← No buzzer output IO_PCN1.bit.OE = CLEAR;

 }else{

← Buzzer output IO_PCN1.bit.OE = SET;

 }

break;

case 0x04: ← ID: 0x04

← Check the state of SW3 and SW5, and display on LED led_control();

 ucDATA04[0] = 0x0F;

 count_clear();

break;

default:

break;

Figure 6-27 Submain processing 1

 153

AN07-00202-3E

void sub_control(void){

(omitted)
← Check state of SW4 (for left side) else if(SW4 == CLEAR){

switch (ucCurrentId.fields.id){

(omitted)
← ID: 0x04

case 0x04:

 ucDATA04[0] = 0x55;

 led_control(); ← Check state of SW3 and SW5, and display on LEDs

if(countup == SET || countdown == SET){

 ucDATA04[3] = LED_current_value; ← Send display data to LEDs

← Display on 7SEG led_seg1_display(LED_current_value);

 }

 else{

 ucDATA04[3] = 0xff;

 }

 count_clear();

break;

case 0x05:

 if(ucDATA05[3] != 0xff){
← Receive display data for LED LED_current_value = ucDATA05[3];

 led_display(LED_current_value); ← Display on LED

 led_seg1_display(LED_current_value); ← Display on 7SEG

 count_clear();

 }

break;

default:

break;

Figure 6-28 Submain processing 2

 154

AN07-00202-3E

7 Appendix

7.1 Sample program folder/file configuration
The folder/file configuration of the sample programs is shown below.

File/folder name Description

bitspot_white_SampleProgram
 bitspot_white_SampleProgram.wsp Softune workspace file

single_operation Folder for single-unit operation
Debug

ABS
single_operation.abs Sample program abs file

single_operation.mhx Sample program Hex file
 LST
 OBJ
 OPT
Ext_int

ADC.c A/D converter initialization file
Ext_int.c External interrupt initialization file
initial_clock.c Internal clock initialization file

PPG_int.c PPG timer initialization file
MB96350_IO

_ffmc16.c For header file definitions
_ffmc16.h For header file definitions
_ffmc16_a.asm Assembly language I/O definition file
mb96350.h For header file definitions

mb96350_a.inc I/O register definition file (assembly language)
 ioreg.txt I/O register usage guide (C language file, English version)

ioreg_a.txt I/O register file usage guide (assembly language file,
English version)

ioregj.txt I/O register file usage guide (C language file, Japanese
version)

ioregj_a.txt I/O register file usage guide (assembly language file,
Japanese version)

single_operation.dat Softune settings file
single_operation.prj Softune project file
main.c Main source file
ROM_cfg_block.c Settings file for running the monitor debugger

start907s.asm Microcontroller start assembly file
CAN Folder for CAN operation

Debug
ABS

CAN.abs Sample program abs file
CAN.mhx Sample program Hex file

LST
OBJ
OPT

CAN__LIN_Board.sup Debugger file

 sim.sup Debugger file

 155

AN07-00202-3E

ADC
 AD.c A/D converter initialization file
C_CAN_driver

C_CAN_1_Driver_1.c CAN initialization (interrupt levels, baud rate, etc.)
C_CAN_1_Driver_2.c CAN initialization (message buffers)

C_CAN_1_Int.c CAN interrupt processing function
Ext_Int
 Ext_Int.c External interrupt initialization
Inc

Ext_func_decla.h External function declaration file
Ext_para_decla.h External variable declaration file
MB96350

_ffmc16.c For header file definitions
_ffmc16.h For header file definitions
_ffmc16_a.asm Assembly language I/O definition file
mb96350.h For header file definitions
mb96350_a.inc I/O register definition file (assembly language)
ioreg.txt I/O register usage guide (C language file, English version)
ioreg_a.txt I/O register file usage guide (assembly language file,

English version)

ioregj.txt I/O register file usage guide (C language file, Japanese
version)

 ioregj_a.txt I/O register file usage guide (assembly language file,
Japanese version)

MCU_init
 Clock_config.c MCU clock initialization
Port_LED
 Port_LED.c Defines the function for driving the port
Reload_timer
 Reload_timer.c Reload timer initialization and interrupt functions
Src

_ffmc16.c For header file definitions
main.c Main source file

start907s.asm Microcontroller start assembly file
Vct

Intvect.c Interrupt vector definitions
ROM_cfg_block.c Settings file for running the monitor debugger

CAN.prj

CAN__LIN_Board.dat Softune settings file

LIN Master
 Debug
 ABS
 LIN MASTER.abs Sample program abs file

LIN MASTER.mhx Sample program Hex file
 LST
 OBJ
 OPT
 MASTER.sup Debugger file

sim.sup Debugger file
 INCLUDE
 jpn_eur.h Header definition conversion file
 define.h Header definition file
 lin.h Header file for the LIN driver

linapi.h Header file for the data communication API code

 156

AN07-00202-3E

 157

 lindbcpu.h Header file for CPU compatibility definitions
 lindbmsg.h Header file for LIN communication definitions (baud rate

settings, ID setting, signal registration, etc.)
 linhibios.h LIN driver high level header file
 linlobios.h LIN driver low level header file
 lindbmaster.h Header file for separate LIN communication node

definitions
 Vector.h Microcontroller header file
 APPL
 start907s.asm Microcontroller startup assembly file
 ad.c A/D converter file
 extint.c External interrupt processing function
 main.c Main source file

portled.c Function definition file for driving the ports
 ppg.c PPG processing function
 ROM_cfg_block.c Display file for monitor debugger settings
 submain.c Driver low level source file (CPU resource control)
 main.h Main source header file

extern.h External reference definition header file
 DRIVER
 linapi.c Data communication API code header file
 linhibios.c Driver high level source file (LIN protocol control)
 linlobios.c Driver low level source file (CPU resource control)

linmaster.c LIN master communication node definition file
 IOREG
 _ffmc16.c For header file definitions
 _ffmc16.h For header file definitions
 _ffmc16_a.asm Assembly language I/O definition file
 mb96350.h For header file definitions
 mb96350_a.inc I/O register definition file (assembly language)
 ioreg.txt I/O register usage guide (C language file, English version)
 ioreg_a.txt I/O register file usage guide (assembly language file,

English version)
 ioregj.txt I/O register file usage guide (C language file, Japanese

version)

ioregj_a.txt I/O register file usage guide (assembly language file,
Japanese version)

 LIN MASTER.prj Softune project file

 MASTER.dat Softune settings file

Table 7-1 Folder/file structure of the sample programs

	Revision History
	Introduction
	Contact
	Suppliers of the parts/materials
	1 Setting up the starter kit
	1.1 Setting up the PC
	1.1.1 Downloading the software
	1.1.2 Installing the USB driver
	1.1.3 Installing the integrated development environment SOFTUNE (bits pot white dedicated version)
	1.1.4 Installing PC Writer (bits pot white dedicated version)
	1.1.5 Installing EUROScope (evaluation version)
	1.1.6 Configuring the board and connecting it to the PC

	2 Running the program
	2.1 Executing in single chip mode
	2.1.1 Building a project
	2.1.2 Writing the program into the microcontroller

	2.2 Debugging by using Monitor Debugger
	2.2.1 Activating and configuring SOFTUNE
	2.2.2 Changing the source file to activate with EUROScope
	2.2.3 Writing the program into the microcontroller
	2.2.4 Activating and configuring EUROScope

	2.3 Exiting EUROScope
	2.4 Exiting SOFTUNE

	3 Operation of the sample program
	3.1 bits pot white single-unit operation
	3.2 CAN communication operation (CAN communication operation
	3.3 LIN communication operation (LIN communication operation with the bits pot yellow)

	4 Try to implement single-unit operation
	4.1 Overview of single-unit operation
	4.1.1 Controlling the SW inputs to light up the LEDs
	4.1.2 Changing the buzzer sound using the volume SW
	4.1.3 7SEG display by temperature sensor operation
	4.1.4 Sample Programs

	5 Try to use CAN communication
	5.1 What is CAN?
	5.2 CAN specifications
	5.2.1 CAN frame configurations
	5.2.2 Arbitration
	5.2.3 Error management

	5.3 Using the microcontroller to perform CAN communication
	5.4 Understanding and running the program for CAN communication
	5.4.1 CAN communication configuration
	5.4.2 Sample program sequence

	6 Try to use LIN communication
	What is LIN?
	6.2 LIN specifications
	6.2.1 Lin frame configuration

	6.3 LIN communication flow
	6.4 Communication between master and slave if an error occurs
	6.5 LIN communication by using the microcontroller
	6.6 　Understanding and running the program for LIN communication
	6.6.1 LIN communication configuration
	6.6.2 Sample program sequence

	7 Appendix
	7.1 Sample program folder/file configuration

