FUﬁTSU [AN07-00202-3€

F*MC-16FX Family
16-BIT MICROCONTROLLER
MB96F356

bits pot white
CAN-LIN board

User’'s Manual

FUﬁTSU [AN07-00202-3€

Revision History

Date Revision

November 13,2008 | Revision 1.0: Initial release

May 13, 2009 Revision 1.1 TSUZUKI DENSAN’s Logo mark was changed.

April 23, 2010 Revision 1.2
-Change in installation procedure and execution procedure by Euroscope
upgrade.
-The description of the PC specifications in Table 1-1 is corrected.
-Change in company name of FUIITSU MICROELECTORONICS
[New]FUJITSU SEMICONDUCTOR LIMITED

(left blank)

FUﬁTSU [AN07-00202-3€

Note

- The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document
are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu
semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based
on such information. When you develop equipment incorporating the device based on such information,
you must assume any responsibility arising out of such use of the information. Fujitsu assumes no
liability for any damages whatsoever arising out of the use of the information.

- Any information in this document, including descriptions of function and schematic diagrams, shall not
be construed as license of the use or exercise of any intellectual property right, such as patent right or
copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of
any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which
would result from the use of information contained herein.

- The products described in this document are designed, developed and manufactured as contemplated
for general use, including without limitation, ordinary industrial use, general office use, personal use,
and household use, but are not designed, developed and manufactured as contemplated (1) for use
accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious
effect to the public, and could lead directly to death, personal injury, severe physical damage or other
loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass
transport control, medical life support system, missile launch control in weapon system), or (2) for use
requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages
arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, fire,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal
operating conditions.

- If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export of those products from Japan.

- The company names and brand names herein are the trademarks or registered trademarks of their
respective owners.

Copyright© 2010 FUJITSU SEMICONDUCTOR LIMITED all rights reserved

FUﬁTSU [AN07-00202-3€

Table of Contents
REVISION HISOTY ...uvieiiiiiiieiieiieiteit ettt ettt ettt et et et e et ebe e beenbeebeenseeseenseenseeseenseenseenseennes 2
INEEOUCTION. ...ttt ettt b bt et b e s bt eb e sb e sbe e st et sb e e bt entenbeebeeneen 12
COMEACT ...ttt ettt sttt st st sat e sat e sut e sat e sae e sueesatesaeesbeesbeesuaeeaneeanesaneeas 13
Suppliers of the Parts/MAaterialS..........cccveciieiieeiieeie ettt st esree e e saee e e saeeseeees 14
I Setting up the STArter Kit.......coieoiieiieii ettt ettt et seaeeaeseaeesaeseaeseaesnne e 15
1.1 Setting UP the PC ..ottt st seae e enne e 23
1.1.1 Downloading the SOTtWATEcceevieiiieiiieiieietetet ettt 24
1.1.2 Installing the USB dIiVerccueiiiiiiieiieiieieteitetetee ettt 24
1.1.3 Installing the integrated development environment SOFTUNE (bits pot white
AEICALEA VETSION)iiuiieiiieiiieiieti et et ettt et et et e bt e aeenbeenbeenseenseenseenseenseenseenseenseenseenseenseensean 28
1.1.4 Installing PC Writer (bits pot white dedicated Version)cceecveveerieneenieneeennenne 34
1.1.5 Installing EUROScope (evaluation VErsion)..........ccceeeeereereeneenieenienieseeseesnesnennns 37
1.1.6 Configuring the board and connecting it to the PC...........ccoevierieniiniiniiieieeee, 44
2 RUNNING the PrOZIAIMN ..c.eeiiiiiiiieiieieeie ettt ettt te et eteseteseteseaesatessaessaesssesssesnsesssesnnesnnenns 46
2.1 Executing in single chip MOde.........cocuieiiriiieiiieiieiieieeieee ettt 47
2.1.1 BUilding @ PrOJECt......cecvieiieiieiieiieiteitettet ettt ettt sttt ettt e aeenseesseenes 47
2.1.2 Writing the program into the microcoONtrollerovverierierieniienieeieeie e 51
2.2 Debugging by using Monitor DEDUZEETc.cevuieriirriieriieriieiierieeiteieenieesee e seeesiee e 55
2.2.1 Activating and configuring SOFTUNEcccoiiiiiiiiiieeeeeeee e 56
222 Changing the source file to activate with EUROSCOPEc.coovveviieiiieiiiiieiieiieieenee, 58
2.2.3 Writing the program into the microCONtrollercovverierierienieniecieeee e 61
2.2.4 Activating and configuring EUROSCOPE.......ccverieriiiieiienieieseceeeie e 65
2.3 EXiting EUROSCOPEoouvieiieiieieeitettet ettt ettt ettt ettt ettt et ens e enseensen 72
2.4 EXiting SOFTUNE.....coiiiiiiiee ettt 74
3 Operation of the SAMPIE PrOGIAM........eccuiiiiieiieiieie ettt ettt et et eaesaeeeeeesane e 76
3.1 bits pot white SINgle-Unit OPETatiON.......eevuteruieriieriieriieriierte e stesetestestesetestesetesaee e eneeenes 76

3.2 CAN communication operation (CAN communication operation with the bits pot red)....78

3.3 LIN communication operation (LIN communication operation with the bits pot yellow) .80

4 Try to implement Single-Unit OPETAtION.cc.veruieiiieriieriieiieieeieeie ettt e e e seeeneeas 82
4.1 Overview of SINGle-UNIt OPETATIONc..eevieiieiieiieiieiieieeieeie et et et et eseee e esseesseeseeeneeas 82
4.1.1 Controlling the SW inputs to light up the LEDSccccocieiiiiiiiieiieieeieeee, 82
4.1.2 Changing the buzzer sound using the volume SW.........ccocovviiriiiniiiniiniiieeeeeee, 84
4.1.3 7SEG display by temperature SENnSOr OPETAtioncecveerveerieerieerieenieeneeeneeenieeneeeneees 86
4.1.4 SamPle PTOGIAMSc.eeeiiiiieiieiece ettt ettt sttt st eae 88

FUﬁTSU [AN07-00202-3€

5 Try to use CAN COMMUNICALIONeeuvireiereieeieeieeieeteeeteetesteeeesseesseessaesseesseesseesseesseesseesseesseenses 94
5.1 WRAL IS CANT L.ttt sttt sttt b e s bt bt et s bt b este b sbeebeenee 94
5.2 CAN SPECITICALIONS ...uveeueeeiiieieeiieeie et eteeteeteeteeteeteeeteseaesstesaaessaessaesssesssesssesssesssesnsessnenes 96

5.2.1 CAN frame CONTIGUIALIONS........ccuieriieiieiietietieteett et et et ebe et eaeeseeseenseenseenseenseas 96
522 ATDITALION ..ottt ettt b 100
523 Error Management..........coouiiiiiiiiiieiiie ettt 102
5.3 Using the microcontroller to perform CAN commuNicationcccceeevereenveneeneeneennes 104
5.4 Understanding and running the program for CAN communication............cccceeeeerevernennne. 109
54.1 CAN communication CONfIGUIAtIONc.ceeuerierieeieeie ettt 109
542 Sample Program SEQUEIICEcc.eervierreereerieentienteerteenteestesseesseesseesseesseesseesseesseesseenses 113

6 Try to use LIN COMMUNICATION ...eouvieurieiieiieiieiieiieitettesitesttenitesteesseesseesseesseesseesseenseesseenseenses 122
6.1 WHRHAL 1S LINT ..ttt ettt sttt st et nb e s bbb b eneen 122
6.2 LIN SPECITICALIONS ..eeutieuiieniieniieiieitettei ettt ettt et et ee bt essee bt e bt e seesseesseesseenseenseenseenses 125

6.2.1 Lin frame configurationc.eecueeeuieciieiiieie ettt ettt st ene 125
6.3 LIN communication flOW.......cccoeririeieniniriieieninteteeniesieetete ettt saeeaeens 128
6.4 Communication between master and slave if an error OCCUIS.......coceecververereecienenencenns 130
6.5 LIN communication by using the microcontroller...........occoveievviervieiienienieniecieeeeeeee 131
6.6 Understanding and running the program for LIN communication...........cccceeeververeennennne. 134

6.6.1 LIN communication configuration............cecueevueeruerriieieerieeieeie e eeeeee e eeesee e e 134

6.6.2 Sample Program SEQUEIICEcc.eerveerreerieerieentienteeieenteeseesteesseesseesseesseesseesseesseesseenses 138

A N o) 1< 1 1§D OSSR 155
7.1 Sample program folder/file cONfigUIation............cccvevvierierierierieriereereree e 155

FUﬁTSU [AN07-00202-3€

List of Figures

Figure 1-1 External Doard VIEW...........uuiiiiiiiiiiiiiiiiii ettt eeeeees 16
Figure 1-2 System connection diagrami.........cceeuuuuuiieeeiiiiiiiiinne e e e eeeeiiis e e e e eeeeeri e eeeeees 19

Figure 1-3 System connection diagram (when performing CAN communication or LIN

COMMIMUITCALION) ettt e e e e e e eeettbt s e e e e e eeeeabba s e e eeeeeeetbba s s e e eeeeeeabbba s e eeeeeeeessbansaeeeeeenes 20
Figure 1-4 Downloading the USB drivVer.........ccuuuuiiiiiiiiiiiiiiiiinieeeeeeeeeitiis e 24
Figure 1-5 Installing FT232R USB UARTcooitiiiiiiiiiiiiiiiiiir e 25
Figure 1-6 Selecting the search loCAtioNScuuvvuiiieiiiiiiiiiiin e eeees 25
Figure 1-7 Completing the USB Serial CONVEItercooeiviiiiiiiiiiiiiiiiiiiiiiiineeeeeeee 26
Figure 1-8 Installing USB Serial Port.........ccooviiiiiiiiiiiiiiiiiis e 26
Figure 1-9 Selecting the search loCatioNScuuvuuiieiiiiiiiiiiiri e 27
Figure 1-10 Installing USB Serial POrt........ccoooiiiiiiiiiiiiiiiin it 27
Figure 1-11 INSALET ..cevvviieiii ettt e et e e e e e e e e eabb e reeeeeeeees 28
Figure 1-12 SOFTUNE setup confirmationuuuiveeeeieiiiiiiiieeeeeeeeiiiiians e e e eeeessrii e eeeeeees 28
Figure 1-13 Starting SOFTUNE SETUDveeeiiiiiiiiiiiie e e ettt e e et e e e e eeeenbi e e e eeeees 29
Figure 1-14 Caution on SOFTUNE SEtUP......cccoiiiiiiiiiiiiiiiiii 29
Figure 1-15 SOFTUNE setup/License agreCmentccceeveeerieiiiiiiiiiiiaeiieiiieeieeeneeeeeeeeeeeens 30
Figure 1-16 SOFTUNE setup/Version information.............cccovveiiiiiiiiiiiiiieeee 30
Figure 1-17 SOFTUNE setup/Selecting the destination of installation....................c.oeeeeeen. 31
Figure 1-18 SOFTUNE setup/Selecting the components..............coevveviiiiiiiiiiiiini. 31
Figure 1-19 SOFTUNE setup/Confirming the installation settings.............ccccoeeeeireiiiennnnnnnn. 32
Figure 1-20 SOFTUNE Setup/Status.........ccooiiiiiiiiiiiiiiiiii e 32
Figure 1-21 SOFTUNE setup/Completioncccovviiiiiiiiiiiiiiiiiiiiee e 33
Figure 1-22 PC Writer/Installation dialog............ccooovviiiiiiiii 34
Figure 1-23 PC WIIEI/SEtUP TYPC «.ceevveieiieiieiiieeee et 35
Figure 1-24 PC Writer/Ready to install ..., 35
Figure 1-25 Completing the PC Writer installation...............cccoooiiii, 36
Figure 1-26 EUROScope installation dialog.............cccoooiiiiii, 37
Figure 1-27 EUROScope/License agreCmentcceeeieiiiiieiiieiiiiiiiieiieeeieee e 37
Figure 1-28 EUROScope/Install path ..., 38
Figure 1-29 EUROScope/Selecting the architecture ..., 38
Figure 1-30 EUROScope/Selecting the setup COMponentsoooevvveiiiiiiiiiiiiiinniienee, 39
Figure 1-31 EUROScope/Confirming the setup informationccooeeeiiiii, 39
Figure 1-32 EUROSCcOPe/EXECUtING SCTUP ..ccevveiiiiiiiiiiiiiiieiiceeeeeeenee e 40
Figure 1-33 EUROScope/Setup completeoooovviiiiiiiiiiiiii, 40

FUﬁTSU [AN07-00202-3€

Figure 1-34 EUROScope/License information SCIEEMNuuuiiieeeeiieeriiiiineeeeeeeeeiiiinneeeeen 41
Figure 1-35 EUROScope/Information input SCIEEMccvvuruuiiiieeeeiieiiiiiiine e e e eeeeeiiinn e 42
Figure 1-36 Mode SWILCR ...uuuiiiiiiiiiiiii e 44
Figure 1-37 Connection between the PC and the board...............oooooiiiiiiiiinni e, 45
Figure 2-1 Activating SOFTUNEuuuiiiiiiiiiiiiii e e e 47
Figure 2-2 Opening @ WOrkSPace.......ccooviiiiiiiiiiiiiiiiii 48
Figure 2-3 Selecting @ WOrKSPacCe.......coovviiiiiiiiiiiiiiii 48
Figure 2-4 Building @ Project.........cooiiiiiiiiiiiiiiiii e 49
Figure 2-5 Completing the build ... 50
Figure 2-6 Opening the file t0 WITtEccooviiiiiiiiiiiiii 51
Figure 2-7 Selecting the file t0 WITtEooovviiiiiiiiiiiiii 52
Figure 2-8 Selecting the COM port to be used for Writing...........cooevvvvviiiiiiiii, 53
Figure 2-9 Checking the COM POIt.......ccooviiiiiiiiiiiiiiii e, 53
Figure 2-10 Writing the program...........ccooviiiiiiiiiiiiiii 54
Figure 2-11 Completing the program Writing...........coovvviiiiiiiiiiiiiiiii, 54
Figure 2-12 Activating SOFTUNE ... 56
Figure 2-13 Opening @ WOTKSPACEcceoiiiiiiiiiiiiiiiie e 57
Figure 2-14 Selecting @ WOTKSPACEccoiiiiiiiiiiiiiiiiece 57
Figure 2-15 Opening the ROM_cfg block.c fileovviiiiiiiiiiiiiiii 58
Figure 2-16 ROM_cfg block.C fl€ .ouvuuuniiiiiiiiiiiiiic e 59
Figure 2-17 Building the Projectcuuuuuuiiieeiieiiiiiiis ettt eeerb e e e eeees 60
Figure 2-18 Opening the flle t0 WITte.......ivveiiiiiiiiiiii et 61
Figure 2-19 Selecting the fi1e t0 WITte........ooviiiiiiiiiiiie e 62
Figure 2-20 Selecting the COM port to be used for Writing...........cooeevviiiiiiiiiii, 63
Figure 2-21 Checking the COM POTt.......ccooiiiiiiiiiiiiiiii e, 63
Figure 2-22 Writing the Program..........ccooiiiiiiiiiiiiiiii 64
Figure 2-23 Completing the program WIitingcooovviiiiiiiiiiiiiiiiie e 64
Figure 2-24 Opening @ flleoooiiiiiiiiiiiii 65
Figure 2-25 Selecting the abs file ... 66
Figure 2-26 Board connection Setting MEeNUccoevvriiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 66
Figure 2-27 Board connection SEHNEccovviiiiiiiiiiiiiiiiiiiceecr e 67
Figure 2-28 Board connection SEHNES........ccovvviiiiiiiiiiiiiiiiiiceciceceecce e 67
Figure 2-29 Board connection settings COmplete..........cooovvviiiiiiiiiiiiiii 68
Figure 2-30 Opening a file ..o 68
Figure 2-31 OUtPut MESSAZEceeeeeieieiieie e 68
Figure 2-32 DebUg SCTCEMccooiiiiiiiiiiiciiee 69

FUﬁTSU [AN07-00202-3€

Figure 2-33 Debug eXecution DULLONvieiieeiiiiiiiie ettt eeeeeebi e e e eeees 69
Figure 2-34 Initializing debug eXECULION.......ccciiiiriiiieeeiiiiiiiie et eees 70
Figure 2-35 Beginning of the program............ccuuuuiiiiiiiiiiiiiiiine e 70
Figure 2-36 Starting debug €XECULIONuiieeiiiiiiiiiie e eeeeeibs e e e e eeeetbr e e e e e e eeenbb e e e eaeees 71
Figure 2-37 Stopping debUg €XECULION.veeiiiiiiiiiiie e e eeeeiiite e e et e e e e eearb e e e eeees 71
Figure 2-38 Ending the eXecution Programcooviiiiiiiiiiiiiiiiiiiie e 72
Figure 2-39 Exiting EUROSCOPE......ccoiiiiiiiiiiiiiii e, 72
Figure 2-40 OUPUL MESSAZEoeeeiieeieeeiiieeeeee e e e e ettt e e e e e 72
Figure 2-41 Configuration SAVEccoiiiiiiiiiiiiiiiiiiie e 73
Figure 2-42 Closing @ WOTKSPACEceeiiiiiiiiiiiiiiie e 74
Figure 2-43 Saving @ WOTKSPACEcoeviiiiiiiiiiiiii i 74
Figure 2-44 Exiting SOFTUNE ..., 75
Figure 3-1 Controls and operations during single-unit Operation.............cccceeevveeiiieiininnnnnnnnn, 76
Figure 3-2 CAN communication operation/Controls and mechanicals................ccccoeeeeeeennnn, 78
Figure 3-3 LIN communication operation/Controls and mechanicalsccceeeeeeninnnn, 80
Figure 4-1 Switches when the board is in single-unit operationcccoeeeeeiiiiiininn, 82

Figure 4-2 Connection configuration between SW3 and the microcontroller pins (schematic

QN Tea 21) PSSP P PP PUUPPPPIIN 83
Figure 4-3 Volume SW when the board is in single-chip operationooeeeviveiiviiiinnnenn. 84
Figure 4-4 Variable T@SISTOTveiiiiiiiiiiiiie ettt e e e et e e e e e e eeebbbaaeeeeaeees 85
Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic

QN Tea 21 1 1) PSSP PPTTRPPPPPPPRIN 85
Figure 4-6 Sound produced by the external-drive buzzer (Schematic diagram) 86
Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram).................... 86
Figure 4-8 Flowchart 0f Main TOULINEeeeieeiiiiiiiiee et e et eeeerri e eeeeees 88

Figure 4-9 Flowchart of A/D conversion processing of the volume SW and temperature sensor89

Figure 4-10 Flowchart of SW3 Operationuuuuiiieiiiiiiiiiiinie et e et eees 90
Figure 4-11 Flowchart of SW5 0perationuuuiiiiiiiiiiiiiiiiniee et 90
Figure 4-12 main routine program (MAIN.C).......uuiiiiiiiiiiiiiiiiiie e 91
Figure 4-13 A/D conversion program for volume SW and temperature sensor operation
L2 L3) TR 92
Figure 4-14 Program for SW3 operation (EXt int.C)......coooviiiiiiiiiiiiii, 93
Figure 4-15 Program for SW5 operation (EXt int.C)......coovviiiiiiiiiiiiiii, 93

CAN stands for Controller Area Network, which is an on-board LAN specification proposed
by Bosch in Germany. It is the most popular on-board control LAN and used in various

parts of a vehicle as shown in “Figure 5-1 Example of on-board CAN application™........ 94

FUﬁTSU [AN07-00202-3€

Figure 5-2 Example of on-board CAN applicationcceuuruiiineeiiiiiiiiiiine et 94
Figure 5-3 CAN bus signal IeVels.......uuuiiiiiiiiiiiiiiii e 95
Figure 5-4 CAN frame CONfIgUIAtionSccevviiruuuiiieeeiieiiiiiin e e ettt eeeeeabi e e e eeees 97
Figure 5-5 Operation of the arbitrationccuuvuuiiiiiiiiiiiiiiii e 100
Figure 5-6 Example of arbitration among nodescouveuriviiiireeiiiiiiiiiiiine e 101
Figure 5-7 CAN Status transition..........ccovvviiiiiiiiiiiiiiiiiiee e 103
Figure 5-8 CAN CITCUI ...cciiiiiiiiiiiiiiiii e 104
Figure 5-9 Initializing CANcoooiiiiiiiiii 108
Figure 5-10 CAN communication flowchart.............ccccovviviiiiiiiiiee e 113
Figure 5-11 SW3 (external interrupt 0) flowchart............ccccvvvviiiiieee 114
Figure 5-12 SWS5 (external interrupt 2) flowchart ..o 114
Figure 5-13 the reload timer interrupt flowchartcccovivii 115
Figure 5-14 the A/D converter interrupt flowchartccccoevviii 115
Figure 5-15 the CAN interrupt flowchart ... 116
Figure 6-1 Example of vehicle LIN applications............ccovvvviiiiiiiiiiiiiiieeee 123
Figure 6-2 Main LIN network configurationcccccviiiiii, 124
Figure 6-3 LIN communication flowcccceiiiiiiiiii 126
Figure 6-4 LIN frame configurationccooovviiiiiiiiiiiiiiii e 126
Figure 6-6-5 Main LIN network configurationcccccoevviiiiiiii, 129
Figure 6-6-6 Example of communication sequence between the master and slaves during
NOrMAal COMMUNICATION ... 129
FIgUre 6-7 LIN CITCUIL. ..ceeturuuieeeeeeeeiiiiiis e e e e e ettt e e ettt e e e e e e e e et s e e e e e e e e naban e e eeeas 131
Figure 6-8 Entire LIN communication control TeZISteruuuivireeeiiiiiiiiiiineeeeeeeeeiiiineenn 132
Figure 6-9 LIN communication flowchart (main routine).............oeeevveeevruuinnneeeeereiiiiiinnnnnn 138
Figure 6-10 LIN communication flowchart (interrupt routine: USART receive interrupt)..... 139
Figure 6-11 LIN communication flowchart (data processing by ID)..........cevveeeiiiiiiiiinnnnnnnn. 140
Figure 6-12 LIN bus initial SETNESvvuuieeeeiiiiiiiiiiiie e eeeeeeiiies e e e et e 141
Figure 6-13 ID registration — Lindbmaster.h...........ccooooiiiiiiiiiii e, 141
Figure 6-14 Send and receive response registration — Lindbmsg.hccoovviiiiiiiiiiiinnnn.n. 142
Figure 6-15 Points where the processing of each interrupt is performedc.uvueieeenen.n. 142
Figure 6-16 Synch break data SEtNGvveeeeiieeiiiiiiiee ettt 143
Figure 6-17 Synch break interrupt CONIol...........uvuuiiieiiiiiiiiiiiiie e 143
Figure 6-18 Processing to determine whether synch break was received............c.uvueinnennen. 145
Figure 6-19 Synch field interrupt CONtrolcouuvuuiiiiiiiiiiiiiiii e 146
Figure 6-20 Synch field interrupt CONtrolcouuvuuiiiiiiiiiiiiiiii e 146
Figure 6-21 Synch field receive determination ProCeSSINGovveeeeeieerrruiiineeeereeeeirninaeenss 147

FUﬁTSU [AN07-00202-3€

Figure 6-22 UART send Start ProCESSING......ccuveeurruuniieeeeiieiiiiiiineeeeeeeeeairiinaeeeeseeensraan s 147
Figure 6-23 ID receive determination PrOCESSING v eeeeiieeurruuireeeerereeiriianneeeeeeeeerrnnneees 148
Figure 6-24 Timeout deteCtion PrOCESSING......ceverrrruuireeeerieeitiiiireeeeeeeeeertira e e eeeeeerrans 149
Figure 6-25 DATA SENd PrOCESSING «.evvvuunieeeeiiiiiiiiiiie e e e e eeeitia e e e e et ettt e e e e e e e eenba e 150
Figure 6-26 DATA 1€CEIVE PIOCESSINEZ +vuuuieeeeeieeiriiiieeeeeeteeittiiraeeeeseeeetrninaeeeeseeensrnnaens 151
Figure 6-27 Submain processing 1ccoovviiiiiiiiiiiiiii 153
Figure 6-28 Submain processing 2cccvvvviiiiiiiiiiiiiiiiiiiiieeiee e 154

10

FUﬁTSU [AN07-00202-3€

List of Tables

Table 1-1 COMPONENLE LIST.....irtieiieiieiieiieiiete et et et et et et et e bt ebeeseeseeseenseenseenseenseenseensean 15
Table 1-2 LiSt 0f DOAId PATSccuieiiieiieiieiieieeieete ettt ettt ettt be e beebeebeenseenseenseensean 18
Table 1-3 MBO6F356 Pin aSSIZNMENL.......ccueeitieiieiierieesiieteeieeteeteeseesseesseeseeseeseenseenseesesnses 21
Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals.......................... 77
Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals.......... 79
Table 3-3 LIN communication operation/Descriptions of the controls and mechanicals 81
Table 5-1 Data frame StIUCLUIE.c..coeeieriiririeieniceteetet ettt ettt s eieens 97
Table 5-2 Error frame SIUCTUIE.......cccevuiriirieieienienieetetest ettt sttt st st eieens 99
Table 5-3 Overload frame StIUCTUIEcc.evueeieriiririeteereetetee ettt s eieens 99
Table 5-6 CAN 1e@ISTET LISt 1 ...oiiiieiiiiieiieie ettt st s es 105
Table 5-7 CAN 1eZISIET 1St 2 .eocuiiieiieiieie ettt saeesaeesaeenns 106
Table 5-8 CAN 1e@ISIET ISt 3 ..eoiuiiiiiiiieie et sttt st s es 107
Table 5-9 CAN communication conditions of the sample program............ccccceeeeeeiereervennenne. 109
Table 5-10 CAN message IDs in the sample program...........ccceceeeueeeieeiieeieeieeieeie e eve e 110
Table 6-1 Description of the entire LIN communication control registers and setting values..133
Table 6-2 LIN communication conditions of the sample programccccceeeveriereenvennenne. 134
Table 6-3 LIN message IDs in the sample program...........ccocceeverieeienieniesiesie e see e 134
Table 7-1 Folder/file structure of the sample Programsccceeeveeeeeevierieeieeieeiesee e 157

11

FUﬁTSU [AN07-00202-3€

Introduction

Thank you very much for purchasing the bits pot white (referred to as this starter kit or the starter
kit hereafter).

This starter kit is a beginner’s kit intended for those who wish to start learning microcontrollers and
on-board network processors. The kit is designed so that the beginners who ask “What is a
microcontroller?”, “How does it work?”” and “How does it control a network?” can easily learn
what it is.

The kit includes flash microcontroller development tools, so if you have slight understanding about
the C language, you can rewrite a program to let the microcontroller perform in various ways. Even
if you do not know of programming, you may be able to enjoy learning a microcontroller with a
study-aid book about the C language.

This starter kit can also serve as an introductory training tool for electronic circuit practice or future
embedded software development in a class of a college or high school of technology or training for

freshman engineers of a manufacturer.

12

(o8]
FUJITSU

Contact

Please ask the following e-mail address for the technical question.

Please confirm HP for the latest information and FAQ of bits pot.

“S“TSUZUKI

Zip code: 105-8420 2-5-3 Nishi-Shinbashi, Minatoku, Tokyo

E-mail: pd-bitspot@tsuzuki-densan.co.jp

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

13

IAN07-00202-3E|

mailto:pd-bitspot@tsuzuki-densan.co.jp
http://www.tsuzuki-densan.co.jp/bitspot/

FU(]}iJTSU [AN07-00202-3€

Suppliers of the parts/materials

Capacitors 22pF: GCM1552C1H220JZ202
InF: GCM155R11H102KAO01
1uF: GCM21BR11E105KA42

0.1pF: GCM188R11E104KA42
4.7uF: GCM31CR71E475KA40

Ceramic Resonator 4MHz: CSTCR4MO00G15C

Buzzer: PKLCS1212E40A1

S&TDK

NTC Thermistors: NTCG164BH103JT1

Ferrite Beads: MPZ2012S300AT

Common Mode Filters ZJYS81R5-2P24T-GO1

14

(e8]
FUJITSU

1

Setting up the starter Kit

IAN07-00202-3E|

Before using this starter kit, be sure to check the components listed in Table 1-1 are fully

supplied.

Before connecting the bits pot white (referred to as the board hereafter), you need to install

software in your PC. You can download the software required for the starter kit from our web site.

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

No. Article Qty. Specifications Remarks
1 | Board 1 Board mounted with See Figure 1-1
a Fujitsu Semiconductor
MB96F356
F*MC-16FX series microcontroller
2 | USB cable 1 USB (A to miniB) Accessory
K‘
-
"
3 | CAN cable 1 3-pin cable Accessory
—
4 | LIN cable 1 2-pin cable Accessory
Sa—|
5 | PC 1 On which Windows XP normally runs and | Prepare the PC by yourself.
USB2.0 ports are supported.
Approximately 200 MBytes free hard disk
space is required.

Table 1-1 Component list

15

http://www.tsuzuki-densan.co.jp/bitspot/

FUﬁTSU [AN07-00202-3€

5. CAN connector 7. LIN connector 8. USB-UART converter
9. USB connector
18. Jumper pin (JP1) 3. LED lamp
19. Jumper pin (JP2, JP3)
3. LED lamp
22. Extension power (12V) 3. LED lamp
20. Extension power (5V)
21. Bxtension GND
10. 7SEG
6. LIN transceiver I
LED lamp
4. CAN transceiver IC
17. Extension pin 3. LED lamp
1. Target device 11. Buzzer
2. Target device oscillator
12. Mode SW
13. Reset SW 14. Test SW 16. Volume SW
15. Temperature sensor
Figure 1-1 External board view

“Table 1-2 List of board parts” shows the list of parts that make up this board.
No. | Name Function Description
1 Target device MB96F356 Main microcontroller (MB96F356).

CSTCR4M00G15C Ceralock made by Murata Manufacturing
2 Target device oscillator
(4MHz) Oscillator for the main microcontroller.
LED lamps connected to the general-purpose I/O
3 LED lamps LED (red) x 10
pins.

16

(e8]
FUJITSU

IAN07-00202-3E|

4 CAN transceiver IC MAX3058 ASA+ Transceiver IC for CAN communication.
Connector for CAN communication.
5 CAN connector 3-pin connector Connect this connector to the CAN connector on the
bits pot red.
6 LIN transceiver IC TJA1020T Transceiver IC for LIN communication.
Connector for LIN communication.
7 LIN connector 2-pin connector Connect this connector to the LIN connector on the
bits pot yellow .
USB to UART
8 FT232RL IC for conversion between UART and USB.
converter
USB connector for connection with the PC to
9 USB connector miniB
write/debug a program.
10 | 7SEG LED 7SEG LED x 2 7SEG LEDs connected to general-purpose 1/O pins.
External-drive electric sounder made by Murata
11 | Buzzer PKLCS1212E40A1 Manufacturing. Connected to the PPG timer output
pin.
Switches the operation mode of the main
12 | Mode SW Slide switch
microcontroller (MB96F356).
13 | Reset SW Push switch Switch to reset the starter kit.
Push switch x 2 Push switches and slide switches connected to
14 | Test SW
Slide switch x 1 general-purpose I/0 pins for testing purpose.
NTC thermistor made by TDK
15 | Temperature sensor NTCG164BH103
Temperature sensor connected to the A/D converter.
16 | Volume SW Volume SW Volume SW connected to the A/D converter input.
Extension pins of the main microcontroller.
17 | Extension pins —
For details, see the circuit diagram.
Jumper pins for switching the LIN transceiver IC
power supply.
1-2: Supplied by USB bus power (5V)
18 | Jumper pin (JP1) —
2-3: Supplied from external power supply (CN7)
azv)
The default is 1-2.
Jumper pins for USB-UART conversion setting.
Jumper pins (JP2, UART communication handshake setting.
19 —

JP3)

1-2: Handshake by software.
2-3: Handshake by hardware.

17

(e8]
FUJITSU

IAN07-00202-3E|

The default setting is 1-2 (common to JP2/JP3).

Extension power
20 Extension 5V power terminal.
(5V)
21 | Extension GND Extension GND terminal.
Extension power pin for the LIN transceiver IC.
This is used to supply power (12V) from an external
LIN transceiver IC
22 source.

extension power (12V)

When used, jumper pin (JP1) is required to be set to
2-3.

Table 1-2 List of board parts

18

FUﬁTSU [AN07-00202-3€

“Figure 1-2 System connection diagram” shows the connection of the system for single-unit

operation.

* Prepare the PC by yourself.

Use the USB cable included in the kit for the
connection.

(The power is supplied from the USB bus power.)

Figure 1-2 System connection diagram

Connect the PC with the board by using the USB cable included in the kit.
The power supply for the board is supplied from USB. (USB bus power)

[Note]

Connect the USB directly to the PC. Do not connect the USB via an extension unit such as a

docking station, or via a USB hub.

19

FUﬁTSU [AN07-00202-3€

“Figure 1-3 System connection diagram (when performing CAN communication or LIN
communication)” shows the connection of the system for CAN communication and LIN
communication. (Note: When performing CAN communication or LIN communication, the bits
pot red or bits pot yellow, respectively, need to be purchased separately. Refer to each of the

manuals for the settings of the bits pot red or bits pot yellow when performing communication.)

* Prepare the PC by yourself.

CAN cable (included
accessory)

LIN cable (included
accessory)

AC adapter (included
ﬂaccessory)

BLDC Motor
(Supplied part)

Figure 1-3 System connection diagram (when performing CAN communication or LIN

communication)

Connect the board to the PC using the supplied USB cable, and connect the bits pot red (CAN
communication) or bits pot yellow (LIN communication) to the board using the dedicated cables.
The power for the bits pot red and bits pot yellow is also supplied from USB, the same as this board.
(USB bus power)

20

(e8]
FUJITSU

IAN07-00202-3E|

“Table 1-3 MB96F356 pin assignment” shows the pin assignment of the main microcontroller

MB96F356.
Table 1-3 MB96F356 pin assignment

Pin-No. Description Connected to Remarks
1 AVss GND —
2 AVRH GND —
3 P06_2/AN2/PPG2 TH1 —
4 P06_3/AN3/PPG3 —
5 P06_4/AN4/PPG4 —
6 P06_5/ANS/PPGS -
7 P06_6/AN6/PPG6 JP2 —
8 P06_7/AN7/PPG7 JP3 —
9 PO5_0/ANS/SIN2/INT3 RI1 FT232RL(TXD) —
10 P05 _1/AN9/SOT2 FT232RL(RXD) —
11 P05 _2/AN10/SCK2 —
12 P05 _3/ANI11/TIN3 —
13 PO5_4/AN12/TOT3/INT2_R SW5 SW pressed=L
14 P05 _5/AN13/INTO_R/NMI_R SW3 SW pressed=L
15 P05_6/AN14/INT4_R SwW4 —
16 P04 2/IN6/RX1/INT9 R/TTG6/TTG14 | MAX3058(RXD) —
17 P04 3/IN7/TX1/TTG7/TTG15 MAX3058(TXD) —
18 Vss GND -
19 X0A/P04 0 —
20 X1A/P04 1 —
21 MD2 GND —
22 MD1 PULL-UP —
23 MDO SW1 —
24 P0O0_0/ADOO0/INT8 SEG1 H output = On
25 P00 _1/ADO1/INT9 SEG1 H output = On
26 P00 _2/AD02/INT10 SEG1 H output = On
27 P00 _3/ADO3/INTI11 SEG1 H output = On
28 P00 _4/AD04/INT12 SEG1 H output = On
29 P00 _5/ADOS/INT13 SEG1 H output = On
30 P00_6/AD06/INT14 SEG1 H output = On

21

(e8]
FUJITSU

IAN07-00202-3E|

31 P0O0_7/AD0O7/INT15 SEG1 H output = On

32 PO1_0/ADO8/CKOT1/TIN1 —

33 PO1_1/AD09/CKOTX1/TOT1 —

34 P01 _2/ADIO/INT11_R/SIN3 TIA1020T(RXD) —

35 P01 _3/ADI11/SOT3 TIA1020T(TXD) —

36 P01 _4/AD12/SCK3 TJA1020T(NSLP) | —

37 PO1_5/ADI13/SIN2 R/INT7 R —

38 P01 _6/AD14/SOT2_R —

39 PO01_7/ADI15/SCK2_R —

40 P02 _0/A16/PPG12 LED4 L output = On

41 P02 1/A17/PPG13 LED3 L output = On

42 P02 2/A18/PPG14 LED2 L output = On

43 P02 3/A19/PPG15 LEDI1 L output = On

44 P02_4/A20/TTG8/TTGO/INO —

45 RSTX RESET L input = Reset

46 X1 Ql 4 MHz oscillator

47 X0 Q1 4 MHz oscillator

48 Vss GND —

49 Vcee 5V —

50 C GND —

51 P02 5/A21/TTGY9/TTG1/IN1/ADTG_R —

52 P04 4/SDAO/FRCKO —

53 P04 5/SCLO/FRCK1 —

54 P03 _0/ALE/IN4/TTG4/TTG12 SEG2 H output = On

55 P03 _1/RDX/INS/TTGS5/TTG13 SEG2 H output = On

56 P03 2/WRLX/WRX/RX2/INT10 R SEG2 H output = On

57 P03 3/TX2/WRHX SEG2 H output = On

58 P03 _4/HRQ/OUT4 SEG2 H output = On

59 P03 5/HAKX/OUTS SEG2 H output = On

60 P03_6/RDY/OUT6 SEG2 H output = On

61 P03_7/ECLK/OUT7 SEG2 H output = On

62 P06_0/ANO/PPGO VRI1 Power supply voltage
division 0 to 100%

63 P06_1/AN1/PPG1 BZ1 —

64 AVcce 5V —

22

FUﬁTSU [AN07-00202-3€

1.1 Setting up the PC

Install the software required to operate this starter kit into the PC.

To set up the PC, take the following procedures.

@ Downloading the software (refer to Section 1.1.1)

@ Installing the USB driver (refer to Section 1.1.2)

@ Installing the integrated development environment SOFTUNE (bits pot white
dedicated version) (refer to 1.1.3)

@ Installing the PC Writer FUJITSU FLASH MCU Programmer
(bits pot white dedicated version) (refer to 1.1.4)

® Installing EUROScope (refer to 1.1.5)

® Configuring the board and connecting it to the PC (refer to 1.1.6)

23

FUﬁTSU [AN07-00202-3€

1.1.1 Downloading the software
Download the file from the following website, and decompress it.
bits pot URL : http://www.tsuzuki-densan.co.jp/bitspot/
1.1.2 Installing the USB driver
@ Install the USB driver.

Download the driver that matches your OS from the following FTDI website.
http://www.ftdichip.com/Drivers/D2XX.htm

hnology Devices International Ltd

Click on the Driver Version
Home » | D2XX Direct Drivers

Products This page contains the C2XX drivars currently avaitable for FTDI devices.
Drivers download.

For Virual COM Poit (VGP) divers, please chck hite

o
Instatistion guides are availobie #om the nstalfaticn Guides page of the Documents section of this site for selected operating systems.

Documents

Resources » | D2XK Drivers

Projects D2 diivers sllow diet access to the USB device through a DL Agplication sobware can accass the USB device throug A tunction ealla. Ths funciions avallabla are fisted in the [IZX

Support Programmer's Guide documant which is available from the Documents section of this site.
Knowledgebase

Sales Network Programming examgiles wsing the D20 drivers and DLL can be found in the Pigiects section of this site
Web Shop
Design Services

Operating System Devices Supported Driver Version Comments
Corporate
Windows: Servar 2008
Press Wirdows Server 2008 354 Miciosoh WHOL cortfied
FTDI Newsletter Windows Vista Also svallable 53 3 setup execulabls for default VIO and PID
Contact Windows Vista 154 = alues,
e rrann e ez e, |, St O e
Windows XP 164 : 1 ==_ a Combined diiver madel (D2 and VCP). Dewces programmed as
Winidaws 2000 VEP will expose & COM pott, irs will AM and BM desices.
Windows. Server 2003 Release Notes
Windows Serar 2003 54
Windows %6 FRIRR, FI245R, FT22s2, FT258, Wo langer actively supported
Windows ME Fr248, FIBZIZAM, FIELIGRM 2L A an Nt bicroen WD ceife

Requires Mac 05 X 10.4 (Tlgar) or lator.
Lid Bth Augus! 2008 Customars who wish to use thair own WID and PID with this dirver
should eontact FID Suppon with ther tequiremient

Requites Mac 05 X 103 (Panther) af later.

FT232R, FT245R, FT2202, FTZ28,

Mac OS X (rds]) FT2458, FTBUZIZAM, FTEUZ4SAM

FT232R, FI245R, FT230, FT2R26,

Mag OS5 X Q14 Bt August 2008 Customers who wish 1o use their own VID and PID with this diiver
FTBUZI2AM, 45N
Fha; RE should contact ETDL Supgar with their requirement
FIIRR, FT245R, FT2232, FT2S26, i
Linwx FIOASB, FIMZAAN, FIL2 0433 1th January 2007 Insiructions in Beadhle fle.
Mo PEE A Evimn £y s eveas Mo A B amiined P ot thd EVO dniiman il maa

Figure 1-4 Downloading the USB driver

24

http://www.tsuzuki-densan.co.jp/bitspot/
http://www.ftdichip.com/Drivers/D2XX.htm

(e8]
FUJITSU

driver starts.

and then click the “Next” button.

Found New Hardware Wizard i

Welcome to the Found New
Hardware Wizard

This wizard helps you install software for:
FT232R USB UART

.’_}_ If your hardware came with an installation CD
< or floppy disk, insert it now.

Wheat do you want the wizard to do?

" Install the software automatically [Fecommended)
& Install from a list or specific location [Advanced)

Click Mext to continue.

Back Mext > Cancel

Figure 1-5 Installing FT232R USB UART

Found New Hardware Wizard

Please choose your search and installation options. hg

=

& Search for the best diiver in these locations.

Usa the check bozes below to imit or expand the default ssasch, which inchudes local
paths and removable media. The best driver found wil be instalied.

™ Search removable media (floppy, CO-ROM...]
W Inchsde this bocation in the seach:

DeckiophF T D1 Dirven\COM 2 04.06 WHOL Cetihediig Browse

" Don't search. | wall choose the diver to instal

Choose this option to select the device driver from a kst Windows does not guarantee that

the diiver pou choose will be the best match for pous hasdware.

¢ Back et » Cancel

Figure 1-6 Selecting the search locations

25

IAN07-00202-3E|

@After downloading the driver, decompress it, and then connect the board to the PC by using the
USB cable included in the kit. As shown in "Figure 1-5 Installing FT232R USB UART" the dialog
for “FT232R USB UART” installation is displayed; select “Install from a list or specific location”,

@ As shown in “Figure 1-6 Selecting the search locations”, to search for the installation file, check
“Search for the best driver in these locations” and “Include this location in the search” only, select the

location at which the driver was decompressed, and then click the “Next” button; installation of the

FUﬁTSU [AN07-00202-3€

@When the driver installation ends, the dialog shown in “Figure 1-7 Completing the USB Serial
Converter”, is displayed; click the “Finish” button.

Found Sew Hardware Wizard

Completing the Found New
Hardware Wizard
The wazatd has fnished inptaling the software for

E USE Serial Corremibes

Chck: Fireth b choee the wizaed

Figure 1-7 Completing the USB Serial Converter

®After that, as shown in “Figure 1-8 Installing USB Serial Port”, installation of “USB Serial Port” is

indicated; select “Install from a list or specific location” and then click the “Next” button.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

Thiz wizsed heslps pou mistall soltwans lor

USE Senal Pod

*]- IF your hardware came with an nstallation CD
<= of Hoppy digk. insert it now,

‘wihat o pous veant e wizeed bo do?

7 Drvstal thee sodtwears. st omasticaly [Recamemsnded)
(& Irectal from & st or specific location [Advanced)

Chck. Hedt 1o contrme

Hed » Cancel |

Figure 1-8 Installing USB Serial Port

26

FUﬁTSU [AN07-00202-3€

®As shown in “Figure 1-9 Selecting the search locations”, to search for the installation file, check
“Search for the best driver in these locations” and “Include this location in the search” only, select
the location at which the driver was decompressed, and then click the “Next” button; installation of

the driver starts.

Found New Hardware Wizard

Please choose your search and mstallation options.

% Saarch for the best driver in these bcatians.

Lz the check boooes besows bo- it oo sapand the defaull saanch, which inchudes local
paths and remoaile media The best drver ound vall be nclallad

I Sesmch ramovable meda floppy, CO-RO0M..)
¥ Iniciude thas locabon in the sesich

Ytoe'FTD Dneee\COMW 2 04 05 'WHOL CartiheciEd Browse I

7 Dont zeaich. | vill choase the driver Io nstal

Chioote thes oplion bo select the devise dines hom a kel Windows does nol gusrantes thal
Kheer et pour choose will be tha bt match for pous handwans,

< Back Med & Cancel

Figure 1-9 Selecting the search locations

(@When the driver installation ends, the dialog shown in “Figure 1-10 Installing USB Serial
Port” is displayed; Click the “Finish” button.

Completing the Found New
Hardware Wizard

Thee wazad hays: fnished instafing the software for

/jj USE Senial Pont

Chck: Fireth to cloee the wizmd

Figure 1-10 Installing USB Serial Port

27

FUﬁTSU [AN07-00202-3€

1.1.3 Installing the integrated development environment SOFTUNE (bits
pot white dedicated version)

If SOFTUNE V3 of the product version has been installed, first uninstall it, and then install

the bits pot white dedicated version.

Start installing the integrated development environment SOFTUNE. Decompress the
following file in the folder you decompressed in Section 1.1.1, “Downloading the

software”:

¥softwares¥softune¥ REV300021-BV.zip

D Double-click “setup.exe” from among the decompressed files to begin the

installation.

Figure 1-11 Installer

@ Perform the installation by following the on-screen directions. Click the “OK”

button.

F2MC-16 Family SOFTUNE Professional Pack Setup X

' Abways refer to the INSTALLATION MANUAL (Release Moke)
= before installing this product.

Pressing [Ok] will begin the installation.
Prezzing [Cancel] vall Eerminate the installation and display
the INSTALLATION ManUaL (Release MNote).

Figure 1-12 SOFTUNE setup confirmation

28

FUﬁTSU [AN07-00202-3€

@ Click the “Next” button.

F2MC-16 Family SOF TUNE Professional Pack Setup rf_|
Welcome to Setlup

The lrstalis hield® Wizard vall st sl F2MC-16 Famdy
SOFTUNE Professional Pack [bits pol wersion] o your
computer. To continue, chck Mest.

Cancel

Figure 1-13 Starting SOFTUNE setup

® Click the “Next” button.

F2MC-16 Family SOF TUNE Professional Pack Setup

=CAUTION==

This iz the F2MC-16 Famly SOFTUME Professional Pack [bitz pot
YEIZIoN).

If pou would like to know more about SOFTUNE products
of zervices, please contact wour nearest Fujitzu Microelectionice office.

< Back Cancel

Figure 1-14 Caution on SOFTUNE setup

29

IAN07-00202-3E|

(e8]
FUJITSU

® If you agree, click the “Yes” button.

(If you do not agree, you cannot use the software.)

F2MC-16 Family SOF TUNE Professional Pack Setup

License Agreement o
Pleaze read the following licenze agreement carefully, ".

Prezs the PAGE DOWHM ke to zee the rest of the agreement.

Agreement on se of Evaluation Software for Supporting FUJITSU Microcontrollers -

Maotes to User

Thiz agreement ["Aareement’’] iz made by and between Fujitzu Microelectronics Limited
["FML") and any perzan [Uszer”] wiling to use this evaluation version of SOFTUNE
Profeszional Pack ['Evalustion Software'), 3 set of support tools for deweloping

application software ["'&pplication"] for the microcantrollers manufactured and zold by

FML. to prezcribe the termz and conditions under which Uszer iz entitled to try this
free-of-charge Evaluation Software under the laws of Japan. w

Do you accept all the terms of the preceding License Agreement? |If vou choose Ma, the
setup will close. Toinstall F2MC-16 Family SOFTUME Professional Pack (bits pot wersgion], you

must accept thiz agreement.

< Back Yes Mo

Figure 1-15 SOFTUNE setup/License agreement

(D Click the “Next” button.

F2MC-16 Family SOF TUNE Professional Pack Setup

WYersion information Y

_

The version of the toolz installed with thiz zetup iz shown below,

[Contents of thiz Professzional Package [REY: 300021-B%]] 2003.10.08 -
Thiz package iz included the fallowing softwares.
{11 F2ME-1E Family SOFTUME warkbench : W30L35
Customize Bar : Y01L05
Communication module for EazyCODE : WITLO3
Commurication module for ZIPC ; YOTLOT

[2) F2MC-16 Family SOFTUNE C Compiler : %¥30L17

| £

[3) F2MC-16 Family SOFTUNE Assembler Pack REV:300018

Cancel

< Back

Figure 1-16 SOFTUNE setup/Version information

30

[e®)
FUJITSU

IAN07-00202-3E|

The dialog about the destination of installation appears; select the default

folder or desired folder and then click the “Next” button.

F2MC-16 Family SOF TUNE Professional Pack Setup
Chooze Destination Location

Select folder where Setup will ingtall files.

E nter destination directon.
[e.g. C:ASoftune)

- Destination Faolder

C:ASoftune

< Back

Figure 1-17 SOFTUNE setup/Selecting the destination of installation

@ Keep the default settings and then click the “Next” button.

F2MC-16 Family SOF TUNE Professional Pack Setup
Select Components

Chooge the components Setup will install

Select the components you want bo ingtall, and clear the components you do not want to
install

i — Description -

W SOFTUME “Warkbench Integrated Enviranment

- [Customize Bar Development Platform

: [[] Communication module for EasyCODE Integrated E nvironment

8 [[] Communication module for ZIPC Development Platform for the
- SOFTUME C Compiler

F2tC-16 Farmily.
] SOFTUME Aszembler Pack,

Space Required on C:

161920 K
Space Available on C:

TI7EER K

< Back et > | Cancel

Figure 1-18 SOFTUNE setup/Selecting the components

31

FUﬁTSU [AN07-00202-3€

Click the “Next” button.

F2MC-16 Family 5OF TUNE Professional Pack Setup

Install information

Check the current zetting before starting to copy files.
Click the [EACEK] button ta make changes. Click the [MEXT] button to start copying files.

Current Settings:

Destination DirectarnkC:hzoftune
SOFTUME wiarkbench
SOFTUME Warkbench : Install
Cuztomize Bar: Mo Install,
Comrmunication module for EasyCODE : Mo Ingtall
Communication module for ZIPC : Mo Install.
SOFTUME C Compiler : Install
SOFTUME Assembler Pack : Install

< Back

Cancel]

Figure 1-19 SOFTUNE setup/Confirming the installation settings

@D The installation is performed.

F2MC-16 Family 5OF TUNE Professional Pack Setup
Setup Status

F2MC-16 Family SOFTUME Professional Pack, [bits pat version] Setup iz performing the
requested operations.

Installing: SOFTUME Workbench
C:haoftunehbinhwi307F2 dil

I %

Cancel

Figure 1-20 SOFTUNE setup/Status

32

[e®)
FUJITSU

(D Click the “Finish” button.

F2MC-16 Family SOF TUNE Professional Pack Setup

InstallShield Wizard Complete

Setup has finished instaling F2MC-16 Family SOFTUME
Professional Pack [bitz pat version)] on your computer.

I 1 would like to view the [nstallation Manual file

< Bach Finizh I

IAN07-00202-3E|

Figure 1-21 SOFTUNE setup/Completion

This completes the installation of SOFTUNE.

33

FUﬁTSU [AN07-00202-3€

1.1.4 Installing PC Writer (bits pot white dedicated version)

Start installing PC Writer. Look for the following file in the folder where you decompressed in
“Section 1.1.1 Downloading the software”:

¥softwares¥pc writer¥MB96F356 setup.exe
@ Double-click the downloaded “MB96F356 setup.exe”; the dialog shown in “Figure 1-22 PC

Writer/Installation dialog” appears and installation starts; click the “Next” button.

& FUJITSU FLASH MCU Programmer for FMC16FX bits pot MB96F356 - I... @

Welcome to the InstallShield Wizard for
FUJITSU FLASH MCU Programmer for FMC16FX
bits pot MB96F356

The Installshield{R) Wizard will allow wou to modify, repair, or
remowe FUJITSL FLASH MCU Programmer For FIMC16FY, bits pot
MB9GF356, To continue, click Mext,

[oMest> [Cancel]

Figure 1-22 PC Writer/Installation dialog

34

(e8]
FUJITSU

IAN07-00202-3E|

@ The dialog shown in “Figure 1-23 PC Writer/Setup type” appears; select “All”, and then click

the “Next” button.

& FUJITSU FLASH MCU Programmer, for FMC16FX bits pot MB96F356 - I... @

Setup Type

Choose the setup type that best suits vour needs,

Please select & sekup tvpe,

All program Features will be installed. (Requires the most disk
space.)

O Custom

Choaose which program Features vaou want installed and where they
will be installed, Recommended for advanced users,

[< Back]I et = l [

Cancel

]

Figure 1-23 PC Writer/Setup type

® The dialog shown in “Figure 1-24 PC Writer/Ready to install” appears to tell that the setup is

ready to install PC Writer; click “Install”.

& FUJITSU FLASH MCU Programmer for FMC16FX bits pot MB96F356 - I.

Ready to Install the Program

The wizard is ready to begin installation.

Click Install to begin the installation,

exit the wizard,

IF wou wank ko review or change any of vour installation settings, click Back, Click Cancel to

[< Barck]| Install i [

Cancel

]

Figure 1-24 PC Writer/Ready to install

35

FUﬁTSU [AN07-00202-3€

@ After the installation ends, the dialog shown in “Figure 1-25 Completing the PC Writer

installation” appears to tell the completion of installation; click “Finish”.

& FUJITSU FLASH MCU Programmer for FMC16FX bits pot MB96F356 - I... @

Installshield Wizard Completed

The Installshield Wizard has successfully installed FUIITSU
FLASH MU Programmer for FIMC16F% biks pok MB9EF356, Click.
Finish ko exit the wizard,

Figure 1-25 Completing the PC Writer installation

This completes the installation of PC Writer.

36

FU(]}iJTSU [AN07-00202-3€

1.1.5 Installing EUROScope (evaluation version)
Start installing EUROScope (evaluation version). Look for the following file in the folder
where you decompressed in “Section 1.1.1 Downloading the software”:
¥softwares¥euroscope¥euroscope _setup.exe
@ Double-click the “euroscope setup.exe” file you downloaded to begin the
installation.
@ Follow the on-screen directions to proceed with the installation. Click the “Next”

button.

EUROScope 3.0 2009-06-05 [x]

welcome to the EUROScope 3.0

(,\.BVEUI"OS““ Installation Wizard!

Embesded Syflams GmbHE

Thiz wizard will help vou installing EUROS cope 3.0 on pour
COMmpUter.

FPackage wergion 2009-06-05

[Mext »] [Cancel]

Figure 1-26 EUROScope installation dialog

@ If you agree, check the checkbox and click the “Next” button.

(If you do not agree, you cannot use the software.)

EUROScope 3.0 2009-06-05 (X

License Agreement i, .
Y'ou must accept the license agreement to contifue Q' eU I"OS

o EWbedded Sptiens Gral

THIS CLICKWRAP EVALUATION LICENCE is made hetween:- ~

3] EUROS Embedded Systerns GrebH having its principal place of business at Campestrasse
12, 90419 Murembers, Germany (the "Licensor" which exprassion shall mehide its
subsidiaries, agents, successors and assigns) and

b1 wou (“the Licensee™).

BY CLICKING “YES”, INSTALLING, COPYING OE OTHERWISE USING THE
SOFTWARE YOU ACCEPT THE TERMS AND CONDITIONS OF THIS LICENCE IF
YOU DO NOT AGREE TO THESE TERMS AND CONDITIONS, DO NOT CLICK “YES™,
INSTALL, COPY OR USE THE $ OFI'WARE

Background:- .

" T 1mcancma sad cdlae BTTROIE miearrn acasr sanine lase deaselernd Hhvanoe of cofhaenan Frovanen ——

o
< EI accept the licenze ag®

’ < Back ” Mest »][Cancel

Figure 1-27 EUROScope/License agreement

37

FUﬁTSU [AN07-00202-3€

@ Click the “Next” button.

EUROScope 3.0 2009-06-05

Choose installation directory
All components will be installed in this directary

) euros:

Ewbecded Sitens GmaH

Chooze the EUROS cope 3.0 installation directory.
The directory will be created if it does not already exist.

EUROScope 3.0 inztallation path

C:AProgram FileshE UROS cope | Chooze...

[< Back “ MNeut J[Cancel

Figure 1-28 EUROScope/Install path

® Check the “Fujitsu F1I6LX/F16FX” checkbox, and then click the “Next” button.

EURDScope 3.0 2009-06-05

Choose architectures and toolzets

Select at lzast one architecture lnj;ll eu I"OS*

Ewbecded Sitens GmaH

Chooze the architectures and toolzets for which pou want to install ELRO0S cope 3.0

[ao51 L
[aRM7M4

[Altera Miasz 11

[Cortex M3

[Freescale GBHC12
[] Freescale Coldfire
Fuijitsu F1BL</F16F
[Fuitsu FR

[] Infineon C16=

[] Infineon TriCare

Il

[< Back][MNewt =][Cancel

Figure 1-29 EUROScope/Selecting the architecture

38

FUﬁTSU [AN07-00202-3€

® Click the “Next” button.

EUROScope 3.0 2009-06-05

Choose products
Select at least one product

) euros:

Ewbecded Sitens GmaH

These productz are available for the architectures and toolzets pou selected:

--- Hogt components ---
4-300-00-00 EURDScope baze
4-802-00-00 EUROSecope module ELIROSohjects
4-903-00-00 EUROScope madule EURDStrace
4-5917-00-00 EUROScope target connection far Fujitzu 18R BoatR Ok
4-921-00-00 EUROScope CPU module Fujitzu F2MCTBLx, / F2MC1EF
4-354-00-00 EUROScope module EJROSAnalyze

[< Back H Mewt »][Cancel]

Figure 1-30 EUROScope/Selecting the setup components

@ Click the “Next” button.

EUROScope 3.0 2009-06-05

Summary
Press "Mext' to perform the selected tazks

) euros:

Ewbecded Sitens GmaH

| Installation directary: ~
C:APragram FileshEIROS copes E

These products will be installed: -
EUROS cope baze
EUROS cope target connection for Fujitzu 16F BootRO M
EUROScope CPU module Fujiteu F2MCTELX ! F2MCTEF

These files will be installed:
- odire
16F=Config.cfg
CPU <dir>
CPUNARMT humb. dil
Cpu <dirx
CpudFRMCTELDLL. dll

[< Back “ MNeut J[Cancel]

Figure 1-31 EUROScope/Confirming the setup information

39

FUﬁTSU [AN07-00202-3€

(®The installation is performed.

EUROScope 3.0 2009-06-05

Pleaze wait__.

Performing zelected tazks ‘nj eu I”OS*

Ewbecded Sitens GmaH

Inztalling
EUROScope baze

[vAFrogram Fileshdothytz. dll

Figure 1-32 EUROScope/Executing setup

(©0nce the installation has finished, click the “Finish” button.

This completes the installation of EUROScope.

EUROScope 3.0 2009-06-05

= « EUROScope 3.0 installation
@ euros finished.

Exividded Systams Gmbl

EUROSzape 3.0, wersion 2003-06-05% camponents have been
sucessfully installed.

Figure 1-33 EUROScope/Setup complete

40

FUﬁTSU [AN07-00202-3€

Next, activate Euroscope.
Select “All Programs”— “EUROS”— “EUROScope” from the Windows Start menu to activate

Euroscope. Because there is no license for the first time, the following screen is displayed.

To obtain a license, note down the Host ID (Fig. 1-34 (1)), and for customers outside of
Europe, click the “Request EUROScope lite 16FX key-other countries” button (Fig. 1-34

).
Mo wvalid license key found C

Mo walhd ELIROS cope licenze key could be found ar your key has expired.
Full verzion EUROScope

To obtain a tine limited evaluation key, press the button below to contact
our regiztration server

[For a time limited evaluation key, pleaze press thiz button]

Fujitsu EUROS cope lite 16FX

)

To obtain ELROS cope lite 1EF key, prezz the button below to contact

\ carresponding reqistration server

Request ELIROScope lite 16F key - European countries
Fleaze press thiz button
‘ 1)

\,
\ FReguest ELUROScope lite 16F key - other countries
Flease press thiz button

Az an altermnative, you may alzo contack us at
<regizteri@euroz-embedded. com:
providing vour name, company, address and the calcul

| XOXXXXXX |

| Cloze

Figure 1-34 EUROScope/License information screen

(Note:The screen in Figure 1-34 outputs and Euroscope can not be started case, though the installation of
Euroscope is completed. Such a situation occurs,when there are two or more MAC addresses of PC and installing.

Please set the MAC address to one and install and start.)

41

FUﬁTSU [AN07-00202-3E]

@D When the following screen is displayed, fill in the Host ID (Fig. 1-34 (1)) you noted down
and the required fields using single-byte alphanumeric characters, then click the “Request Keys”
button. The license keys will be sent by e-mail at some later stage.

(Note: The situation may occur where “This page cannot be displayed” appears after you press the “Request

Keys” button. However, this is not a problem as long as the license keys are sent by e-mail.)

Please fill in the form fields!

Figure 1-35 EUROScope/Information input screen

42

FUﬁTSU [AN07-00202-3€

(DE-mail is sent by the EUROScope(Subject: “EUROScope Lite keys”).The license key is
appended. Please decompressed the attachment(euros-license.zip).
There is euros-license.key when the attachment is decompressed. euros-license.key save in the
EUROScope installation folder (the default is C:¥Program Files¥EUROScope).

(Note: The content of the key is different for each application.)

At this point, press the “Close” button in the screen shown in Fig. 1-35. Close the screen shown in

Fig. 1-34 also to finish.

This completes the installation of EUROScope.

43

FUﬁTSU [AN07-00202-3€

1.1.6 Configuring the board and connecting it to the PC

After installing SOFTUNE and EUROScope, configure the switches on the board
and connect the board to the PC.

(D Set the mode switch on the board to “PROG”.

Set the mode SW to the
“PROG” side.

Figure 1-36 Mode switch

Mode switch Operation mode

PROG FLASH memory serial write mode

— Used to write programs into the microcontroller.

RUN Single chip mode

— Used to run the program written into it.

Then, connect it to the PC.

44

FUﬁTSU [AN07-00202-3€

@ Connect the USB cable included in the kit to a USB port on the PC and the USB port on the

board. Be sure to directly connect between them without using a USB hub.

Connect a USB port on the PC. For information about port

locations and so forth, refer to the manual of the PC.

After SOFTUNE and EUROScope

installation, connect the USB cable.

USB port

Figure 1-37 Connection between the PC and the board

The power of the board is supplied via USB (USB bus power).

[Note]
If a driver installation dialog is displayed after connecting the board to the PC, USB
drivers may be incorrectly installed. Return to Section 1.1.2, “Installing the USB driver”

and begin the installation again from the start.

45

FUﬁTSU [AN07-00202-3€

2 Running the program

To run a program with the starter kit, use either of the following procedures.

@ Executing in single chip mode Go to P.48
@ Debugging by using Monitor Debugger Go to P.56

46

IAN07-00202-3E|

(e8]
FUJITSU

2.1 Executing in single chip mode

In single chip mode, use the following procedures.

@ Building a project
(@ Writing the program into the microcontroller

2.1.1 Building a project

Preparation

Decompress the following file in advance from within the folder you decompressed in Section

1.1.1, “Downloading the software”.

¥sample program¥bitspot white SampleProgram.zip

@ Activate SOFTUNE.
Select “All Programs” — “Softune V3” — “FFMC-16 Family Softune Workbench” from

the Windows Start menu to activate Softune.

#= SOFTUNE Workbench
File Edit Yiew Project Debug Setup Window Help

Bl slzlel Bl 2o =5

| | 2| Dis(@] :|v[e] o] &lalw]w) = |
&1Al =15 _slel 5l B

Tor i1 T el B T e T B

e i T |

Figure 2-1 Activating SOFTUNE

a7

FUﬁTSU [AN07-00202-3€

(@ Open the workspace file for the sample program.
Select “Open Workspace” from the “File” menu.

= SOFTUNE Workbench

‘ File Eﬂ View Project Debug Setup Wind

Tew, ..
Open... Chrl+0

Save Az,
Save All

Fecent Text Fil 3
Recent Workspace File b

Exit

Figure 2-2 Opening a workspace

@Open the “bitspot_white SampleProgram.wsp” file in
the bitspot_white SampleProgram folder of the sample program.
¥bitspot_white_SampleProgram¥bitspot white SampleProgram.wsp

Open Workspace E]

Loak in:][:"} bitzpot_white_S ampleProgram _:j L] =k B
can

[CILIM Master
[isingle_operation
bitspot_white_SampleProgran. wep

File name:]I:uitspu:ut_white_S armplePragram. wep
Files of type: 1W0rkspace File[*.wsp) _11 Cancel

Figure 2-3 Selecting a workspace

At this point, the workspace file for running the sample program is open. (The

sample program is not executed when this workspace file is opened.)

48

FUﬁTSU [AN07-00202-3€

@ The workspace screen is opened. Select the project you want to run from among (1) to (3) below,
and set it as the active project. Next, click “Project” — “Build” from the menu to build the project.
(The method for selecting the active project is by “right-clicking on the project name” and then
selecting “Set as Active Project”.)
(1) For single-unit operation
“single operation.abs” = Active project
(2) For CAN communication

“CAN.abs” = Active project

(3) For LIN communication

“LIN MASTER.abs” = Active project

g= SOF TUME Workbench - bitspot_white_SamplePr
i : Setup Window Help

q L

Set the project to run as the

active project (bold font) Setup Workspace. .. =
\ \— Setup Project... j_
n tkspace'bitspe Customize Build...
[single_ope Project Dependencies...
#-_] Source F Configuration ’
(] Include F ;
- (5 Ext_int Include Dependencies
i+ (] ADCON ’
3 D PRG_ink shift+FS
i+ (@8 Depend
S o T
i can.abs -"C
B LN MASTER, eiternal IfF DLL... »

Figure 2-4 Building a project

49

FUﬁTSU [AN07-00202-3€

Now building...

start907s.asm
MAIN.C
ROM _cfg block.c

Now linking...

C:¥softune¥bits pot white files¥sample
program¥bitspot_white SampleProgram¥single operation¥Debug¥ABS¥single operation.abs
Now starting load module converter...

C:¥softune¥bits pot white files¥sample

program¥bitspot white SampleProgram¥single operation¥Debug¥ABS¥single operation.mhx

Check that there are no errors.

Figure 2-5 Completing the build

50

[e®)
FUJITSU

2.1.2 Writing the program into the microcontroller

Preparation

IAN07-00202-3E|

The mode switch on the board is required to be set to “PROG” in order to write the program. If

the mode switch is not set to “PROG”, switch the mode switch to “PROG”.

@ Select “All Programs” — “FUJITSU FLASH MCU Programmer” — “MB96F356” from the

Windows Start menu to activate PC Writer.

@ To select a file to be written as shown in “Figure 2-6 Opening the file to write”, click the “Open”

button.

i FUJITS U FLASH MGU Programmer =13

Tareet Microcontroller |MBSGFa5E =l
Grystal Frequency 4MHz | Click this. o
ddress FFFFFFH
i Pl B Flash Memory Size | 048000H
Command to GOM2
Option
Full Operation (O+ B+ B+) ‘ Set Environment | Help |
Download | | | F’MC-16FX
| | [| tie pot FUﬁTSU
MBOEF356

Figure 2-6 Opening the file to write

51

FUﬁTSU [AN07-00202-3€

® The dialog that allows you to select the file is displayed as shown in “Figure 2-7 Selecting the
file to write”; select the file built in Section “2.1.1, @ Building a project” and then click “Open”.
(1) For single-unit operation
¥bitspot_white SampleProgram¥single operation¥Debug¥ABS¥single operation.mhx
(2) For CAN communication
¥bitspot_white SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx
(3) For LIN communication
¥bitspot white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx
Open |E”E|

Lack in: |@.-’-‘«BS L] . IC:F Ed-

File: narve:]single_operation. b
Filez of ype:]S farmat files [*.mbs;" oy, ahs) _:] Cancel

Figure 2-7 Selecting the file to write

@ Then, select the COM port to be used for the writing. Click the “Set Environment” button; the

COM port selection dialog appears. Select the COM port with which the board is connected, and
then click the “OK” button.

1 FUJITSU FLASH MCU Proerammer E|E|E

Tareet Microcontroller |MBQSF356 ﬂ

Start Address DFOOOOH
Crystal Frequency |4MH2 j

End Address Click this
Hex File |sing|e_operation.mhx .

Flash Memory Size H
Command to GOM2
Option

Full Operation {0+ E+ B+ P ‘ St Erelmen | Help |

Downiosd | | | F’MC-16FX
O
| | | bitz pot FU][TSU

MEIEF3EE

52

[e®)
FUJITSU

Customize setting

COMPORT 180und] Tooltips]

- COM PORT SELECT

&

&

@

@

‘o

N

-
COMg COMIS
 COMI0 COM20

[ok | caeel | b |

Figure 2-8 Selecting the COM port to be used for writing

IAN07-00202-3E|

Note: To check the COM port in use, right-click “My Computer” and then select “Properties”; the

system properties are displayed. Select the “Hardware” tab and then click the “Device Manager”

button. After Device Manager activates, check the COM port number in the parentheses of “USB
Serial Port (COM n)” under “Port (COM and LPT)” in the tree shown in “Figure 2-9 Checking the

COM port”.

'__..'_-.EIE'I'II.'II Manager

|Ee acin Vew Heb

=+ |@mFE 2 A =na

-9 Display adapbers

gl DNDYOD-ROM drhees

12 Floppy disk controliers

-5 Floppy disk drives

[1) IDE ATAJATART controlers
&S Junga

B2 Keyboards

557"y Mice and other pointing devices
@ - W Monitors

=% Ports (COM &LPT)

7 Commurications Port {COML)

Check this.

8, Sound, video and game controllars
B -4en Storage volumes

E Syiben devices

B Uritversal Serisl Bus cortrollers

Figure 2-9 Checking the COM port

53

[e®)
FUJITSU

IAN07-00202-3E|

® As shown in “Figure 2-10 Writing the program”, press the “Full Operation” button to start

writing the program; the dialog that asks you to press the Reset switch is displayed. Press the

Reset SW on the board, and then click the “OK” button on the dialog; the program write sequence

starts. For the location of the Reset SW, see “Figure 1-1 External board view”.

£ FUJITSU ELASH MGU Proerammer. E“El@

Tareet Microcantraller |MEIQSF356 j
Start Address DFOOOOH

Crystal Frequency |4MH2 j
Hex File |S\ng|e_uperatiun.mhx Clle thls

Command to GOM2
Full Operation{D+E+B+P} Set Environment ‘ Help |
2
Downoss | | | F’MC-16FX
| | | bits pot FU]‘?TSU
MBIGF356

Y

Then push OF button,

Please reset the microcontroller on userboard.

Cancel

Figure 2-10 Writing the program

® The dialog shown in “Figure 2-11 Completing the program writing” is displayed to notify

you of the completion of the program writing; press the “OK” button to quit PC Writer.

4224 14224
.

[t ended normally completely

Figure 2-11 Completing the program writing

Set the MODE switch on the board to “RUN” and then press the Reset button; the program starts

running. (Note: To perform CAN communication and LIN communication, the bits pot red and bits pot

yellow need to be connected. Refer to “Figure 1-3 System connection diagram”. In addition, refer to the respective

manuals for the connections and settings in the starter kit.)

54

(e8]
FUJITSU

2.2 Debugging by using Monitor Debugger

To debug by using Monitor Debugger, use the following procedures.

D Activating and configuring SOFTUNE
(@ Changing the source file to activate with EUROScope
(@ Writing the program into the microcontroller

@ Activating and configuring EUROScope

55

IAN07-00202-3E|

(e8]
FUJITSU

IAN07-00202-3E|

2.2.1 Activating and configuring SOFTUNE

Preparation

Decompress the following file from within the folder you decompressed in “Section 1.1.1,
Downloading the software” in advance.

¥sample program¥bitspot white SampleProgram.zip

(D Activate SOFTUNE.

Click “All Programs” — “Softune V3” — “FFMC-16 Family Softune Workbench” from
the Windows Start menu to activate Softune.

#=2 SOFTUNE Workbench

Elle Edit View Project Debug Setup Window Help

elulelelol Bl Blom| =121E=]=]]

| = || Dle|@| & |o|m] ol &lalmal) = e
&l e I e b T

R B B B PR

A ey I |

Figure 2-12 Activating SOFTUNE

56

FUﬁTSU [AN07-00202-3€

@ Open the workspace file for the sample program.

Select “Open Workspace” from the “File” menu.

= SOFTUNE Warkbench

Save Az,

Save Al
Fecent Text Fils 3
Recent Workspace File b

Exit

Figure 2-13 Opening a workspace

@ Open the “bitspot_white_SampleProgram.wsp” file in the
bitspot_white SampleProgram folder of the sample program.

¥bitspot_white_SampleProgram¥bitspot white SampleProgram.wsp

Open Workspace E]

Loak in:][:"} bitzpot_white_S ampleProgram _:j L] =k B
can

[CILIM Master
[isingle_operation
bitspot_white_SampleProgran. wep

File name:]I:uitspu:ut_white_S armplePragram. wep
Files of type: 1W0rkspace File[*.wsp) _11 Cancel

Figure 2-14 Selecting a workspace

At this point, the workspace file for running the sample program is open. (The

sample program is not executed when this workspace file is opened.)

57

FUﬁTSU [AN07-00202-3€

2.2.2 Changing the source file to activate with EUROScope

To run the sample programs using EUROScope, the source files need to be changed and

built in SOFTUNE. Use the following procedures.

@ As shown in “Figure 2-15 Opening the ROM_cfg_block.c file”, select the project to
execute from the list of SOFTUNE projects.
Select “ROM__cfg_block.c” from within the project, and double-click to open the file.
(Note: The “ROM_cfg block.c” file of each project is shown (1) to (3) below.
Furthermore, ensure that the project for each of these operations is set as the active
project (shown in bold font). (The method for setting the active project is by

“right-clicking the project name” and select “Set Active Project”.)

(1) For single-unit operation

“single operation.abs” (Active project) — “Source Files” — “ROM_cfg block.c”

(2) For CAN communication

“CAN.abs” (Active project) — “Vct” — “ROM_cfg block.c”

(3) For LIN communication

“LIN MASTER.abs” (Active project) —“Source Files” — “APPL” —
“ROM _cfg block.c”

i‘:—‘:. SOFTUNE Workbench - bitspot_white SampleP|

File Edit Wiew Project Debug Setup ‘Window Help

2 Ilfl_j '.":J JJ || |
Check that the project has become | I [single_cperation] [Debug
the active project (bold fonts).

Double-click

Waorkspace'bitspot_white_SamplePrograi « "
i_ single_operation.abs - “single | t ROM_cfg block.c" file.

=1 =y Source Files
B _ffme1b.c
[mam.c

la

[starto07s.asm
[Include Files
[Ext_int
L1 apcon
(L2 PPG_int
B8 Dependencies
| [§ Debug

e AR e e e

Figure 2-15 Opening the ROM_cfg_block.c file

58

FUﬁTSU [AN07-00202-3€

@ Change the “OFF” part to “ON” in the line

“#set BACKGROUND_ DEBUGGING OFF;” (default state) under the

“4.18 Enable Background Debugging Mode” line in the ROM_cfg_block.c file
(Fig. 2-16 (1)).

@ Check that the value of the second digit from the right in the line
“#set BDM_CONFIGURATION B’000000000000010;” (default state) shown in
Fig.2-16 (2) is “1”.

@ Check that the value (BAUDRATE) is “115200” in the line
“#set BDM_BAUDRATE 115200;” shown in Fig. 2-16 (3).

__

#set BACKGROUND_DEBUGGING OMW ; <<< enable Background Debugging

/— y mode

(2)
(1) .~
#set BOM_CONFIGURATION E' Q0000000000000 i <<< set BOM configuration
[11 - BdmUART
H [
| |+
I
|
I

| Oz A 3B, 2% € 32'B)
4===== BdmSynchMode

(0: Async., 1: sync.

2: BodmkLine, 3: res.)
e BdmautoStart
+ommm BdmExTBreakpointcfyg
Fmmmmm———— BdmkeeprClock
fommm e BdmCalirClock
o BdmKeepBCD
------------ Bdmuserkernal

#SET BOM_BAUDRATE ; <<< Ser Baudrate in Bits/s for BDM
I

Figure 2-16 ROM_cfg_block.c file

]
]
¥
]
-
¥
]
El
*
5
*
]
il

® Select “File” — “Save All” from the SOFTUNE menu to save the changes to the
“ROM _cfg_block.c” as shown in Fig. 2-16.

59

FUﬁTSU [AN07-00202-3€

® Select “Project” — “Build” from the SOFTUNE menu to build the project.

= SOFTUNE Workbench - bitspot_white_SamplePr
i Setup Window Help

qE

o5, P t

Workspacebiespg Customize Buld...

n single_ope Project Dependencies...

(] Source | Configuration »
(] Inchude F -

B3 Ext_jnt Inchude Dependencies

-] ADCOM :

i+ D PPG_int shift+F8

+-[E8 Depe

(5 Debm

B can.abs - "C -

B LN MASTER, eXternal IjF DLL... »

Figure 2-17 Building the project

@ Once the build is completed, check that no errors are output, and check the .mhx
file is created in the following locations.
(1) For single-unit operation
¥bitspot_white SampleProgram¥single operation¥Debug¥ABS¥single operation.mhx

(2) For CAN communication

¥bitspot_white SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx

(3) For LIN communication
¥bitspot_ white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx

60

FUﬁTSU [AN07-00202-3€

2.2.3 Writing the program into the microcontroller

Preparation

In order to write the program, the mode switch on the board needs to be set to “PROG”. If the
mode switch is not set to “PROG”, switch the mode switch to “PROG”.

@ Select “All Programs” — “FUJITSU FLASH MCU Programmer” — “MB96F356” from the

Windows Start menu to activate PC Writer.

@ In order to select the file to write as shown in “Figure 2-18 Opening the file to write”, click the
“Open” button.

Fi FUJITSU FLASH MGU Programmer E|E|E]
Tareet Microcontroller |MEIQSF356 j
Click this. DFODOOH
Crystal Fregquency |4MHz j \7
fid Address FFFFFFH

Hex Fil f
1288 [P | Flagh Memory Size | 048000H
Command to CGOM2

Cptian

Full Operation {0+ E+B+PJ ‘ Set Environment | Help |

Download | | |

F?MC-16FX
o)
mESQDSDFtSES FU] ITSU

Figure 2-18 Opening the file to write

61

FUﬁTSU [AN07-00202-3€

@ The dialog that allows you to select the file is displayed as shown in “Figure 2-19 Selecting the
file to write”; select the file built in Section 2.2.2, “(?) Building the project” and then click “Open”.
(1) For single-unit operation
¥bitspot_white SampleProgram¥single operation¥Debug¥ABS¥single operation.mhx
(2) For CAN communication
¥bitspot_white SampleProgram¥CAN¥Debug¥ABS¥CAN.mhx
(3) For LIN communication
¥bitspot white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER.mhx
Open |E”E|

Lack in: |@.-’-‘«BS L] . IC:F Ed-

File: narve:]single_operation. b
Filez of ype:]S farmat files [*.mbs;" oy, ahs) _:] Cancel

Figure 2-19 Selecting the file to write

Then, select the COM port to be used for the writing. Click the “Set Environment” button; the

COM port selection dialog appears. Select the COM port with which the board is connected, and
then click the “OK” button.

1 FUJITSU FLASH MCU Proerammer E|E|E

Tareet Microcontroller |MBQSF356 ﬂ

Start Address DFOOOOH
Crystal Frequency |4MH2 j

End Address Click this
Hex File |sing|e_operation.mhx '

Flash Memory Size

Command to GOM2
Option

Full Operation {0+ E+ B+ P ‘ St Eelmem | Help |

Downiosd | | | F’MC-16FX
O
| | | bitz pot FU][TSU

MEIEF3EE

62

FUﬁTSU [AN07-00202-3€

Customize setting

COM PORT 150und] Tooltips]

- COM PORT SELECT
& oM CoMn
 COM2 (COMi2
 COM3 O COMI3
" COM4 © COM14
" COM5 (COMI5
" COME COMIE
 COM? (COMI7
" COMB COMIB
 COM3 COMI9
 COMID COM20

[ok | camce | sl |

Figure 2-20 Selecting the COM port to be used for writing

Note: To check the COM port in use, right-click “My Computer” and then select
“Properties”; the system properties are displayed. Select the “Hardware” tab and then
click the “Device Manager” button.

After Device Manager activates, check the COM port number in the parentheses of
“USB Serial Port (COM n)” under “Port (COM and LPT)” in the tree shown in “Figure
2-21 Checking the COM port”.

T, Device Manager = IDI}J
| Ele Adion Yew Hep |

= USBHCST

e ‘n_j ICE ATASATART contralers

& P noo

B Keyboards

5377y Mice snd other pointing devices

- Manitors

=% Ports (COM BLPT)

A Commurications Port (COME)
B Port (1P

Check this.

L ial Port {CCM3)
Bl SCSI and RAID cortrolers
i Sound, video and game controllers
[-%an Shorags vohumes

+ System devices

= Universal Serisl Bus cortrollers

Figure 2-21 Checking the COM port

63

[e®)
FUJITSU

IAN07-00202-3E|

® As shown in “Figure 2-22 Writing the program”, press the “Full Operation” button to start
writing the program; the dialog that asks you to press the Reset switch is displayed. Press the
Reset SW on the board, and then click the “OK” button on the dialog; the program write

sequence starts. For the location of the Reset SW, see “Figure 1-1 External board view”.

% FUJITSU FLASH MCU Proerammer =3
Tareet Microcontroller |MBQSF356 ﬂ
Start Address DFOOOOH
Crystal Frequency |4MH2 j
End Address FFFFFFH
He:x File |sing|e_operation.mhx

Click this.
Command to GOM2

Full Operation{D+E+B+P) Set Environment | Help |

Down load | | |

F’MC-16FX
fee]
mepet s FUJITSU

- .
\:!_‘) Please reset the microcontroller on userboard.

Then push OF button,

Cancel

Figure 2-22 Writing the program

® The dialog shown in “Figure 2-23 Completing the program writing” is displayed to notify you
of the completion of the program writing; press the “OK” button to quit PC Writer.

422414224

.
\l‘) It ended normally completely

Figure 2-23 Completing the program writing

(@D Remove the USB cable from the board and set the mode switch to “RUN”. After this, reconnect
the USB cable. (Note: To perform CAN communication and LIN communication, the bits pot red

and bits pot yellow need to be connected. Refer to “Figure 1-3 System connection diagram”. In addition, refer to

the respective manuals for the connections and settings in the starter kit.)

64

FUﬁTSU [AN07-00202-3€

2.2.4 Activating and configuring EUROScope
@ Activating EUROScope.
Click “All Programs” — “EUROS” — “EUROScope” from the Window Start
menu. (Alternatively, double-click the “EUROScope” shortcut on the desktop.)

The EUROScope debug window is displayed.

@ Specify the information file (single_operation.abs) necessary for execution.

Select “File” — “Open Application...”.

¥ EUROScope

E:: Load additional Symbals..

A Start Dovnload

Exit

Figure 2-24 Opening a file

65

FUﬁTSU [AN07-00202-3€

3 Read the file (.abs).
Select the .abs file as specified in the following locations and click the “Open”
button.
(1) For single-unit operation
¥bitspot_white SampleProgram¥single operation¥Debug¥ABS¥single operation.abs
(2) For CAN communication
¥bitspot_white_SampleProgram¥CAN¥Debug¥ABS¥CAN. abs
(3) For LIN communication
¥bitspot_white_SampleProgram¥LIN Master¥Debug¥ABS¥LIN MASTER. abs
(Note: It is not a problem if “No source for module ‘_ffmc16’” is displayed

on the EUROScope debug screen after reading the file.)

Loaok jn:]) &BS

=
(5| single_operation.abs

| ST eI,

(

File name:]| I
Files of type: [all files 7.7 | Cancel

Figure 2-25 Selecting the abs file

@ Select the PC connection setting for the board.

Select “Preferences” — “Select Target Connection...” from the menu.
® EUROScope — [ffmc16]

" Eile Tareet Communication Tog

= | Preferences

e A _ |
| Code: 0xi (_ffmcis: _1O_PDROD) | Toolbars.
I0_FDROO: Shortouts..,
User Toals..
Fonts..

Load Configuration_
Save Configuration

Save Configuration as_

Recent Configurations *

Debug Gonfiguration 4

Figure 2-26 Board connection setting menu

66

FUﬁTSU [AN07-00202-3€

®) “Select target connection” (Fig. 2-27) is displayed.
Check the “Fujitsu 16FXBootROM (RS232)” is selected. Then, press the

“Configure” button.

aelect target connection

i FrBootROM ¢):ED
Connects to 16F% BootROM via a serial '

communication paort

Figure 2-27 Board connection setting

® “Configure 16FX BootROM connec...” (Fig. 2-28) is displayed. Set each of

the fields as follows.

* Port: Select the port number of the connected COM port.
(Note: Set this to the COM port number you verified in Step @ of Section 2.2.3,
“Writing the program into the microcontroller”. However, for COM port numbers of
“10” or higher, because the setting as shown in Fig. 2-28 cannot be configured, change
the PC port number to “9” or less before making this setting.)

* Baudrate: 115200

« Communication options: Asynchronous communication

. Int/Ext vector mode

When you have finished all of the settings, click the “OK” button.

Configeure 16FX BootROM connec. |

Fort | GOMS

Port zpecification

LISE Serial Port

——
Gdrate [115200 ~ |

Stop after zerial interrupt

Communication options

lP.S nchronous communication >

Serial communication mode

Cry=tal

Usze fast download (unbuffered?

Target options
Awailable HW breakpoints:

o

Figure 2-28 Board connection settings

67

FUﬁTSU [AN07-00202-3€

@ In “Select target connection”, click the “OK” button.

[Foiitsu T6F3Es

Connects to 16F% BootROM via a serial '

communication paort

Figure 2-29 Board connection settings complete

Press the “RESET” button on the board, and then

select “Communication” — “Open” from the menu,

%) EUROScope — [fimc16]

“ | File Tareet

ommunication T

?Cnde: il [_ffrne 15-::__

Figure 2-30 Opening a file

(Note: After doing the above mentioned procedure, The message in Figure 2-31 outputs.

Please push "Yes".)

EUROScope

1 Target CPU has changed. To reflect new CPU optimization abilities it is recommended to reload object File.
Do wou want ta reload it?

Figure 2-31 Output message

68

[e®)
FUJITSU

IAN07-00202-3E|

If EUROScope is correctly connected to the board, the general-purpose registers, code, and

memory values are displayed in the EUROScope window. (Figure 2-32 Debug screen)

Furthermore, the button for starting execution is enabled. (Figure 2-33 Debug execution
button (1))

9 Scope - [D¥sample96350¥ MBOG3E0_0B03¥MBIGIGO¥C AN LINY stort907s asm]
TIFie Tweel Communication Tooks Brofecences View Windon
FESE B ¥

Coda: D000 (aart _stae)

DFOD7A BHI

BFODIC BED
DFOITE EHI

$DFO07B

sDFO0TD
SDFO07F

1L, 07

CHE N -|cFe e 1

3 sel register bank (s 0

el W R, B

i et ILH ko the lovest level

WY 1L, 37

1 set direct page register

WOV A, BPAGE DIRITA S
WV PR, &

2522325 2288 S8RERRRBLENRY

| Ragser: sknosen regater ax

PLOSECEDTFFC RLL=00D00044 RLZ=00000002
L3-000F0080

EMO=TFFC RW1sECED RU2<D044 RN3=0000

EU4=0002 RUS10000 RM5=00S0 RW7=00DF

RO=02 Rl=00 R2:00 R3=00 R4=30 RS=00
R&=DF R7-00

lAeTCIEFCA0 ANeFCOE ALSFCED

[PCsDFO0B0 S3P<0050DD USP=0O00O0O

DFODE4 HOV A, #i01 DIR=0l DTB=00 ADB=0O
433 5=00A0 TLM-0 RPDD CCReAD
DFOOEE MOV orR, A it i ik =0 Sl Ted HeD Zs0 Ved a0
7104 B [TER=FFFC
DFOIES XD oeR, #4520 AND IR, B0
#105 OV &, et SSTACK TP
IV 538,
DFOOGA MOV A, #i0D oy
105 M BT T
DFOOEC MOV 558, A . AND IR, BO00F
107 :?
b SO 12 L cory initini Saive SOURT setivn Lo sINIT section
(7 Apetilitbeetbetosd ol oL ISR RE
DFOOL MOV S, A 14 dacra i, dest s, svc_secticn, deslpaction) =
fi08 ' src_addr
s s 1 00000 ¥R FF FF T BT BT 7 o......
s i 17 000007 < FF 00 FF 00 00 00 FF
DFOOSE HOV A, #F] puo0iE
' o 00015
125 20
DFODSS MOV A, & 21 Lo
s 23 fands
e ~ |lbooza
DFODSE HOV A, #i00 =
e < » 1000031
DFOOSA MOV bTE, A Skt
proo . ¥ | X staioors 0003F
* | Varisble Wake Twe Storage Module Address Siae % | reskpomt
g Local { Giobal | Watch } thee [&
Stopeed 188, Col 1 FZMGIG LX/FX | STOPPED 16FXEootROM at COM2115200 CONNECTED

Figure 2-32 Debug screen

B A B

| Code: 0xDFD0S0 (starf

PHE U e 6FE e

-xl

| DFO07A EBHI

$DFOO7E \ (1)

a5 [
86 ; =et register be

aT "—

Figure 2-33 Debug execution button

69

[e®)
FUJITSU

IAN07-00202-3E|

@ Run EUROScope. (Note: To perform CAN communication or
LIN communication, check that the bits pot red or bits pot yellow is connected.)

Select “Target” — “Initialize” from the menu.

;:) EUROScnne — [d:¥sample96350¥ mboH

ile | Tareet Compinication Tools Prefere

Citr+F12

Shift+F2

F11
> TFH T Step Over F0

DFO7| : :
eaa] {¥ Leave function Shift+F11
#570) ML} Pun until Cursor F4
DFO7

#5?1 Fill Memarsy..

DFO7| Verify Program Image

soak

Figure 2-34 Initializing debug execution

Check that there is a yellow arrow at the start of the main routine (under void main

(void)) in the program window displayed in the center of the EUROScope screen.

27

28 f***********************$*$$$*$*****$*******$**H
20 4 Wain Routine #f
Fi o b o o o o o o A v B o o o R TR v T o v

\}l_flcuid mainiwoid)

Figure 2-35 Beginning of the program

70

IAN07-00202-3E|

[e®)
FUJITSU

Once you have confirmed the yellow arrow, select “Target” — “Go” from
the menu to run EUROScope.

(This makes it possible to perform operations on the board.)

:i) EUROScope — [d:¥zample96350% mbOH

Ctrl+F12

=

Code: D Ea}lnitia“ze

Shift+F2

end: |
pro1| £ Step Into

== ﬁl Step Over

F11
F10

#33

" | [Leave function Shift+F11
malin

O ¥ Fun until Gursar F4
#35 |
DFOl
LFO1 Eris .:--’::.':', T LM3ge

wae |

Figure 2-36 Starting debug execution

@D To stop debug execution on the board, stop from EUROScope.

Select “Target” — “Stop” from the menu to stop execution. (This stops the

operation of this board.)

;:I EUROScope — [d-¥=ample96350¥mba6

File Iarget” Communication Toolz Prefers

= n"’r' FEsE Cir+F12

T
8w

E.Eiude: e 13 hitialize

Figure 2-37 Stopping debug execution

(If you want to run again without quitting EUROScope, repeat the procedure from

step @ above.)

71

IAN07-00202-3E|

[e®)
FUJITSU

2.3 Exiting EUROScope

The procedure for exiting EUROScope is as follows.

@ Select “Communication” — “Close” from the menu.

i} EUROScope — [d:¥sampledf

"1 File Tareet ;Q:ummunicatinn i

Figure 2-38 Ending the execution program

@ Select “File” — “Exit” from the menu. The EUROScope debug window closes.

i__:l EURDOScope - [d-¥=ample96250¥mb26350 081

arget Communication Tools Preferences Wie

E Iiﬁ ﬁgpen Application... Citr |+
d ﬂ@pen Application and Download... Citrl+0
[Cad
[| Load additional Swmbols...
s Start Diowwnload Ctrl+D
i load

Figure 2-39 Exiting EUROScope

(Note: There is a case that the message to save EUROScope configuration of Figure 2-40 outputs
after doing the above mentioned procedure. Please put the check in "Don't show again" and push
"Yes" for the following messages. Next, figure 2-41 outputs. Please input an arbitrary name to the

“File name” and push “save”.Next time, when EUROScope is started, the message doesn't output.)

EUROScope confirmation

Figure 2-40 Output message

72

FUﬁTSU [AN07-00202-3€

Save Workspace E]

Save in | (25 bitspot_white_S ampleProgram v| @ ?‘ (2 v

ican
[CTBLIN Master
[Chsingle_operation

File name: - (20091 216tes]) | . save)

Save as ype: |'W'curkspaces [*.cfg) v.“| [Cancel J {

Figure 2-41 Configuration save

73

FUﬁTSU [AN07-00202-3€

2.4 Exiting SOFTUNE

The procedure for exiting SOFTUNE is as follows.

@ Select "File” — “Close Workspace” from the menu.

== SOF TUNE Workbench - bitsg
‘ G0 EAt View Project Debug S

New, .,
Cpen... Chrl+0
Clase

Save... Chrl+S
Save As...
Save Al

Prink...

Recent Text File ’
Recent \Workspace File 4

Exit

Figure 2-42 Closing a workspace

(@ A message pops up asking “Save changes to project?”. Click the “Yes” button.

Softune907

i 10208 Save changes to project?
E:\templbits paot white files\zample programibitspot_white_SampleProgramibitspot_white_SampleProgran. wsp

Mo] Cancel

Figure 2-43 Saving a workspace

74

FUﬁTSU [AN07-00202-3€

@ Select “File” — “Exit” from the menu to exit SOFTUNE.

#= SOFTUNE Workbench
File

git Wiew Project Debug S

[,
COpen... Ctri+0

Cpen Warkspace...

o
Save As...
E ll

Recent Text File 3
Recent Workspace File 3

Figure 2-44 Exiting SOFTUNE

This completes basic operations up to starting and exiting debug execution, using the sample

program.

75

FUﬁTSU [AN07-00202-3€

3 Operation of the sample program

This section describes the operation of the sample program. The operation of the sample is
classified into the following three categories.
@ bits pot white single-unit operation
@ CAN communication operation (CAN communication operation with bits pot red)

@ LIN communication operation (LIN communication operation with bits pot yellow)

3.1 bits pot white single-unit operation
The operation of programs operating bits pot white as a single unit is shown in this section.
“Figure 3-1 Controls and operations during single-unit operation” shows each control and
mechanicals supported in single-unit operation. Descriptions of each of the controls and
mechanicals are given in Table 3-1.

In single-unit operation, the LED (red) 7SEG LED, and buzzer are activated by controlling the
SW3, SW4, SW5, volume SW, and temperature sensor on the board.

7SEG (red)

@ LEDI to 4 (red)
@ Mode

SW

Buzzer

@ Reset SW

@ sw3 ®) SW5

Figure 3-1 Controls and operations during single-unit operation

76

(e8]
FUJITSU

IAN07-00202-3E|

No. | Name Function Description
Switches between PROG mode and RUN mode.
@ | Mode SW Control PROG: Write a programs
RUN: Run the program
@) Reset SW Control Resets the MCU when pressed.
(©) SW3 Control Lights up all of LED1, 2 and the 7SEG when pressed.
Selects the operation mode.
Left: Enables operation of SW3, SW5, and the volume SW,
@ SW4 Control and LEDs 1 to 2, 7SEG and buzzer operate.
Right: The temperature sensor is enabled and the temperature
sensor information is displayed on the 7SEG LEDs.
Switch the buzzer output on/off each time it is pressed.
® SW5 Control
The sound is changed by controlling the volume SW.
The temperature sensor information is displayed on the 7SEG
® Temperature sensor Control
LEDs. The 7SEG display changes every 5°C.
@ Volume SW Control Changes the 7SEG display and the buzzer sound.
Buzzer Mechanical Produces a sound when SW5 is pressed.
© LED (red) Mechanical Lights up when SW3 is pressed.
7SEG (red) Mechanical Displays according to SW3, volume SW, and temperature sensor.

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals

77

FUﬁTSU [AN07-00202-3€

3.2 CAN communication operation (CAN communication operation
with the bits pot red)

“Figure 3-2 CAN communication operation/Controls and mechanicals” shows the controls and
mechanicals, and “Table 3-2 CAN communication operation/Descriptions of the controls and
mechanicals” provides descriptions about them. The bits pot red performs CAN communication,

controls the motor mounted on the bits pot red, and displays the motor rotation information and the

information received from temperature sensor.

(® CAN Connector

7-SEG (red)

@ LEDI to 4 (Rotation

data)
D Mode SW

® Volume SW

@ Reset SW) o (Rotation speed)
3 SW3 (Rotate/Stop) @ SW4 (Rotation direction)

® SWS5 (Brake/Resume)

Figure 3-2 CAN communication operation/Controls and mechanicals

78

(e8]
FUJITSU

IAN07-00202-3E|

No. | Name Function Description
Switches between PROG mode and RUN mode.
@ | Mode SW Control PROG: Write a program
RUN: Run the programs
@) Reset SW Control Resets the MCU when pressed.
Rotates/stops the motor in turn when pressed. The motor
(©) SW3 Control rotates if it is stopped and stops if it is rotating when this
switch is pressed.
Selects the direction of the motor rotation.
@ SW4 Control Right: The motor rotates clockwise.
Left: The motor rotates counterclockwise.
Brakes/resumes the motor in turn when pressed. The
® SW5 Control temperature measurement mode transition command is issued
when pressed for a long time.
® Volume SW Control Changes the rotation speed of the motor.
@ LED (red) Display Indicates motor rotation information.
Displays temperature information acquired while in
7SEG (red) Display
temperature measurement mode.
During actual operation, needs to be connected by wire for
©® | CAN connector Mechanical
CAN communication with the bits pot red.

Table 3-2 CAN communication operation/Descriptions of the controls and mechanicals

79

FUﬁTSU [AN07-00202-3€

3.3 LIN communication operation (LIN communication operation
with the bits pot yellow)

“Figure 3-3 LIN communication operation/Controls and mechanicals” shows the controls and
mechanicals, and “Table 3-3 LIN communication operation/Descriptions of the controls and
mechanicals” provides descriptions about them.

Performs LIN communication with the bits pot yellow. This starter kit operates as the LIN master
and sends the operation mode using the ID field. This starter kit and the bits pot yellow outputs to
the LED (red), 7SEG display, and buzzer on the starter kit based on the SW operations, temperature
sensor, and volume SW of the starter kit. Furthermore, if an error occurs during LIN
communication, the buzzer is output (Note 1).

Note 1: If the sample program for LIN communication is operated while not communicating with
the bits pot yellow, this is treated as a LIN communication error, and the starter kit outputs a buzzer

sound.

@ LIN Connector

LEDI to 4
@ Mode
SW
Buzzer
@ Volume SW
@ Reset SW @
Sw4
@ sw3 ® SW5 (® Temperature sensor

Figure 3-3 LIN communication operation/Controls and mechanicals

80

© 7SEG (red)

(e8]
FUJITSU

IAN07-00202-3E|

Table 3-3 LIN communication operation/Descriptions of the controls and mechanicals

Name

Function

Description

Mode SW

Control

Switches between RPG mode and RUN mode.
PROG: Write a program

RUN: Run the program

Reset SW

Control

Resets the MCU when pressed.

SW3

Control

If this is press when SW4 is on the left, the currently
displayed values of the LEDs and 7SEG display count up,
and the bits pot yellow LEDs also counts up. When SW4 is

on the right, only the LEDs of the starter kit count up.

SW4

Control

Selects the operation mode.

Left: The LED, 7SEG display, and LEDs on the bits pot
yellow operate when SW3 or SWS are pressed.

Right: Only the LEDs of the starter kit operate when SW3
or SW5 are pressed. The 7SEG display and buzzer
operate based on each SW, volume SW, and the

temperature sensor on the board.

SW5

Control

If this is pressed when SW4 is on the left, the currently
displayed values of the LEDs and 7SEG display count
down, and the bits pot yellow LEDs also counts down.
When SW4 is on the right, only the LEDs of the starter kit

count down.

Temperature sensor

Control

Sends the temperature sensor temperature when SW4 is on

the right.

Volume SW

Control

When SW4 is on the left, sends volume SW information

for the starter Kkit.

Buzzer

Mechanical

When SW4 is on the right, outputs a buzzer sound.
Furthermore, the sound that is output is changed by
controlling the volume SW on the bits pot yellow. The
buzzer also sounds if an error occurs during LIN

communication.

7SEG (red)

Mechanical

When SW4 is on the left, counts up or counts down
synchronized with the LEDs when SW3 or SW5 are
pressed.

When SW4 is on the right, this changes by 5°C based on

81

(e8]
FUJITSU

IAN07-00202-3E|

the temperature sensor temperature.

LED (red)

Mechanical

When SW4 is on the left, counts up or counts down
synchronized with the 7SEG display when SW3 or SW5
are pressed.

When SW4 is on the right, only these LEDs are controlled.

4 Try to implement single-unit operation

4.1 Overview of single-unit operation
The board operates as a single-unit board controlled by the switches (SW3, SW4, SW5, volume

SW) and temperature sensor as shown below.

4.1.1 Controlling the SW inputs to light up the LEDs
The board is fitted with SW3 as shown in “Figure 4-1 Switches when the board is in single-unit

operation” which is connected to pins of the microcontroller.

This section describes how the microcontroller detects the state of SW3 when SW3 is operated in

order to turn the LED on and off.

SW3

Figure 4-1 Switches when the board is in single-unit operation

First, a diagram (schematic) of the connections between SW3 and the microcontroller pins on the

board is shown in Figure 4-2 Connection configuration between SW3 and the microcontroller pins

(schematic diagram)”.

FUﬁTSU [AN07-00202-3€

On the board, the SW3 is connected to the PO5_5 pin, which is a general-purpose I/O port of the
microcontroller. When SW3 is not pressed (OFF), the voltage on pin PO5_5 of the microcontroller
is Vcc (5V) and the input is high. Furthermore, when SW is pressed (ON), the voltage to pin PO5_5
is GND and the input to the PO5_5 pin is low. The input state of pin PO5_5 thus changes depending
on the control of When SW3 is OFF

B When SW3 is OFF M When SW3 is ON

Vee Vce

Microcontroller Microcontroller

PinP05_5 | | PinPOS 5 |
1)
: SW3 ;

1 ‘r' — ! I

10_PDRO2 Register GND 777 10_PDRO2 Register GND 777

J‘I‘J"_+
—4

Figure 4-2 Connection configuration between SW3 and the microcontroller pins (schematic

diagram)

This change in the state of the pin can be detected by the program running on the microcontroller.
In the microcontroller that is mounted on the board, the state of pin PO5_5 can be determined from
the value of the PDR register (IO_PDROS5) for the I/O port within the microcontroller.

The register is memory that stores the microcontroller control state and operating state. The CPU
and peripheral functions can be controlled by writing data to and reading data from the registers.
Furthermore, peripheral functions refer to functions such as I/O ports, timers, and A/D converters
that are built into the microcontroller.

The values of registers can be read using instructions from the microcontroller program. In other
words, the microcontroller program can determine the control state of SW3 by reading the value of
this PDR register (IO_PDRS). The values indicating the state of the pin are “1” for high, and “0”
for low. As a result, the state of the PO5_5 pin, and therefore the control state of SW3, can be
viewed by reading the value of the PDR register (IO_PDRO5).

However, when using the PDR register (IO_PDRO05), it is necessary to set whether to use as an
input or an output. This register is called the DDR register (I0_DDROS).

In this case, PO5_5 is used as an “input” pin in order to sample the SW3 input signal. As a result,
“0” needs to be written to the DDR register (I0_DDROS5) corresponding to the PDR register
(I0_PDROS5).

Next, for the LED control, pins P02 0 to P02 3 of the microcontroller are connected to LED 1 to
4. In this case, the specifications are to set the PDR register (I0_PDR02) to low (“0”) to turn the

83

FU(]}iJTSU [AN07-00202-3€

LED on, and set the register to high (“1”) to turn the LED off. Because the P02 0 to P02 3 pins
therefore need to be set as “output” pins, “1” needs to be written to the corresponding DDR register
(I0_DDRO02).

Summarizing the above, the microcontroller program performs the processing to detect the SW
control state and turn the LEDs on and off by writing “0” to IO_DDROS5 to set pin PO5_5 as an
input, and reading the value of IO _PDROS5 corresponding to the P05 5 pin. Furthermore, the
program writes “1” to IO_DDRO02 to set pins P02 0 to P02 3 as outputs and writes values to
1I0_PDRO02 corresponding to pins P02_0 to P02 _3.

4.1.2 Changing the buzzer sound using the volume SW

This section introduces the process that converts the analog signal into digital using an A/D
converter by operating the volume SW, reads the signal internally as a digital signal, and changes
the buzzer sound according to changes in the digital signal. The A/D converter is a function that
takes an analog value, divides it within specifications based on a set of rules, and converts it to a
digital value. Furthermore, this function is built into the microcontroller, and the conversion
process is called A/D conversion.

In the board, the voltage value applied to the analog pin for the A/D converter can be controlled
by using the volume SW. The analog signal is input to the microcontroller by using this knob. The
input analog signal is converted into a digital signal by the A/D converter and is then processed by

the microcontroller.

Volume SW
Figure 4-3 Volume SW when the board is in single-chip operation

Thus, in order to explain the mechanism of the volume SW, the symbol for a variable resistor is
shown in “Figure 4-4 Variable resistor”.

In fact, volume SW is actually a variable resistor. The board has the circuit configuration shown

84

FUﬁTSU [AN07-00202-3€

in “Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic
diagram)” which changes the applied voltage value depending on this knob, and applies this
voltage to the pin that performs A/D conversion. The applied voltage is converted to digital in 1024

levels, and can be handled as an internal signal.

Y

Figure 4-4 Variable resistor

Vee
Microcontroller T

. Pin ANO

_____ k=] J.r‘,..'.‘

| , . >

I]

1 1

1 I |

: ADCR I GND |74 GND rbr ‘
B et e T e et eyt e e T e e 1

Figure 4-5 Connection configuration of the volume SW (voltage adjustment knob) (schematic

-

(Variable resister)

Volume SW

diagram)

The method for changing the buzzer sound is described next.

The buzzer mounted on the board is an external-drive buzzer, which is able to change the sound
because it generates a sound with an arbitrary frequency for the given voltage. A pulse wave is
therefore output from the microcontroller to produce an arbitrary frequency.

Basically, the PPG timer built into the microcontroller is used to produce output by setting the
“H” and “L” widths of the pulses. Therefore, if the output pulse is changed, the buzzer sound also

changes. (In the program that runs on the board, the PPG timer output pulse is already configured.)

85

FUﬁTSU [AN07-00202-3€

Microcontroller Buzzer

™) =)
ﬁ Pulse output 77/—

PPG timer

Figure 4-6 Sound produced by the external-drive buzzer (Schematic diagram)

Summarizing the above, if the analog value (voltage value) that is changed by controlling the
volume SW is converted into a digital value internally within the microcontroller and a pulse
corresponding to the digital value is output to the buzzer from the PPG timer, then the buzzer sound

is changed by controlling the volume SW.

4.1.3 7SEG display by temperature sensor operation

The board has a built-in temperature sensor. This section describes how the 7SEG display is
controlled by using the temperature sensor.

The temperature sensor is a sensor that detects changes in temperature. Put simply, it is a
thermometer for measuring the temperature. Although there are a variety of ways to measure
temperature, the temperature sensor mounted on this board is a thermistor. A thermistor is
temperature sensor where the resistance changes depending on the temperature by using a
resistance element that employs the temperature characteristics of semiconductors.

A diagram of the circuitry around the temperature sensor on the board (schematic diagram) is
shown in “Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram)”. When
the resistance value of the temperature sensor changes, the input voltage to the A/D converter of the

microcontroller also changed due to this circuitry.

I

Microcontroller
= R=10kQ

AL

____________________ - Pin AN1

I pmm-- L_.—.'v\'!

I . I] ¥

! Registers : ! I‘m Temperature sensor
i ADCS i : :

: :]

|___ADCR ! GND 77 GND =7

A

Figure 4-7 Circuit diagram around the temperature sensor (schematic diagram)

86

FUﬁTSU [AN07-00202-3€

Next, the 7SEG display is basically the same as turning on and off the LEDs.
Each segment (each single thin, long display element) in the 7SEG display is treated the same as a
single LED, and the display method for displaying numbers using the 7SEG display is to write a

value (“0” for on, “1” for off) to the PDR register corresponding to each segment.

Summarizing the above, the input voltage is changed by changes in the resistance of the
temperature sensor. The 7SEG display can then change in response to the temperature of the sensor
by performing A/D conversion of the input voltage using the A/D converter of the microcontroller

and changing the 7SEG display according to the A/D converted digital value.

87

(o8]
FUJITSU

4.1.4 Sample Programs

IAN07-00202-3E|

The flowcharts of the sample programs are shown in the following diagrams (“Figure 4-8

Flowchart of main routine” to “Figure 4-11 Flowchart of SWS5 operation”).

First, the microcontroller internal operating clock is initialized, and the LED and 7SEG display

pins are initialized. Next, the external interrupts corresponding to the SW operation are initialized.

After this, the volume SW side and temperature sensor side are divided by the state of SW4, each

of the A/D converters are initialized, and A/D conversion processing is performed to display the

7SEG display. Furthermore, if an interrupt occurs at this time due to the operation of SW3 or SWS5,

all of the LEDs and the 7SEG display are turned on, or the buzzer is sounded, or these are stopped.

[o

v

Clock initialization

\4

The used LED and

7SEG pins initialization

.

External interrupts

(SW input) initialization

)l

A 4

Turn off LED, 7SEG

Is this the first processing for

the volume switch side?

Left Right

hich side is SW4?

Is this the first processing

for the temperature sensor

v

v

Initialize A/D converter

processing (volume SW)

1| side?

(temperature sensor)

Initialize A/D converion processing

Start A/D conversion

(volume SW)

Figure 4-8 Flowchart of main routine

88

v

Start A/D conversion

(temperature sensor)

FUﬁTSU [AN07-00202-3€

[Start A/D interrupJ

l

v
Clear A/D conversion interrupt source |

|

Acquire A/D value Acquire A/D value
from volume SW from temperature sensor
_ v) 4

'

Is buzzer output enabled?

Yes l

Set PPG interval and duty

cycle based on volume SW level

A

End processing

Figure 4-9 Flowchart of A/D conversion processing of the volume SW and temperature sensor

89

FUﬁTSU [AN07-00202-3€

[Start SW3 external interrupt processing]

v

Clear interrupt source

Right

Which side is
SW4?
Left l

Turn off LEDI1 to 2 and all 7SEG

P
<
A

[End processing]

Figure 4-10 Flowchart of SW3 operation

[Start SW5 external interrupt processing]

A 4

Clear interrupt source

A 4

Acquire A/D value

Right
Which side is
SwW4?

No

PPG first processing?

Yes

A 4

Initialize PPG timer

Disable buzzer output

\4

Buzzer output on/off

&
<
y

A

End processing

Figure 4-11 Flowchart of SW5 operation

90

FUﬁTSU [AN07-00202-3€

Next, we will take a look at an actual program.

Check the following folder in the sample programs. There are several files stored in this folder.
Among these, we will first open MAIN.C.

¥bitspot white SampleProgram¥single operation

First there is the main function shown in “Figure 4-12 main routine program (MAIN.C)”. Within
this function, processing is performed to “the microcontroller internal clock initialization", “LED

and 7SEG pins initialization”, “External interrupts initialization”, and “Infinite loop that performs

A/D conversion processing”.

void main(void)

{
(omitted)
initial_clock(); «—internal clock initializaton
10_PDRO2.bit.P3=1; C
10_DDRO2.bit. D23~1; «—LED pin initializaton

(omitted)

Ext_initial(); « External interrunt initializaton

10_PDRO00.byte = 0xff;

« 7SEG pins initializaton
I0_DDRO00.byte = 0xff;

(omitted)
hile (1 C
\{V ile (1) «— Loop initializaton
if(I0_PDROS5.bit.P6==1) «— Temperature sensor (A/D conversion)

ADC initial_tmp(); ~Processing
(omitted)
ADC _start();

else if(I0_PDRO5.bit.P6=—0) < Volume switch (A/D conversion)
F

ADC _initial_bsw(); P ocesSIng

(omitted)

ADC start();
}

+/* while loop */

Figure 4-12 main routine program (MAIN.C)

91

FUﬁTSU [AN07-00202-3€

Next, the program for A/D conversion processing is shown in “Figure 4-13 A/D conversion
program for volume SW and temperature sensor operation (ADC.C)”.
On the temperature sensor side and volume SW side, the digital values are obtained and divided up
to change the 7SEG display or buzzer sound by the A/D conversion interrupt routine.

__interrupt void interrupt AD(void)

{

I0_ADCSH.bit.INT=0; «— Clear A/D conversion interrupt source

if{O_PDRO5.bit.P6==1) <« Temperature sensor side

{
ad_data_tmp=IO_ADCRLH.DATAS; <« Acquire temperature sensor A/D value

if(ad_data_tmp>214){ « Separate processing by A/D value
I0_PDRO0.bit.PO=0; /* a */ EG displ

10 PDROOBILPI=0, f+ b or0 display
10_PDRO0.bit.P2=0; /* ¢ */

(omitted);

}

else if(ad_data tmp>170){

(omitted)

}
else if(I0O_PDRO05.bit.P6==0) <« Volume SW side

{

ad_data=IO_ADCRLH.DATA8; __ Acquire volume SW A/D value

if(ad_data>215){ « Separate processing by A/D value

10_PDRO0.bit.P0=0; /* a */ :

10 PDROOBitP1=0. kb < /SLC display

10_PDRO00.bit.P2=0; /* ¢ */

(omitted)

ifI0_PCNLbitOE==D){ . Byzzer output enabled
10_PCSR1 = 56000; :

: ; PP I I

10_ PDUTI = 56000/2: « Set PPG interval and duty value
¥

else if(ad_data>191){

(omitted)

}

}

Figure 4-13 A/D conversion program for volume SW and temperature sensor operation (ADC.C)

92

FUﬁTSU [AN07-00202-3€

Next, the program for processing the external interrupts from the operation of SW3 and SWS5 is
shown in “Figure 4-14 Program for SW3 operation (Ext_int.c)* and “Figure 4-15 Program for SW5
operation (Ext_int.c)”.

All of LED 1 and 2 and the 7SEG display are turned on by pressing SW3, the buzzer sounds by
pressing SW5, or these actions are stopped.

__interrupt void interrupt sw3(void)

{
I0_EIRRO.bit.ER0=0; < Clear external interrupt source

if(I0_PDRO5.bit.P6==0) <« Enable SW3 when on volume SW side
{

10_PDRO2.bit.P3=~10_PDRO2.bitP3; . Tum on LED 1 and 2
10_PDRO02.bit.P2=~10_PDR02.bit.P2

if(10_PDR02.bit.P3==0)&(I0_PDR02.bit.P2==0))

I0_PDRO00.byte=0x00; . Tyrn on all 7SEG
10_PDRO03.byte=0x00;

(omitted)
¥

Figure 4-14 Program for SW3 operation (Ext_int.c)

__interrupt void interrupt sw5(void)

{
IO_EIRRO.bit. ER2=0; <« Clear external interrupt source

st_ad_data=IO_ADCRLH.DATA8; «— Acquire A/D value

if(I0_PDRO5.bit.P6==0) «— Enable SW5 when on volume SW side
{

if(sw5_flag==0)
{

PPG _initial(); «— PPG timer initialization

}

I0_PCN1.bit.OE=~I0_PCN1.bit.OE; <« Sound or stop buzzer sound
¥

else if(10_PDRO5.bit.P6==1){ <« When temperature sensor side
(omitted)

I0_PCN1.bit.OE=0; « Set buzzer output disabled

(omitted)
bl

Figure 4-15 Program for SW5 operation (Ext_int.c)

93

FU(]}iJTSU [AN07-00202-3€

5 Try to use CAN communication

Communication is to send/receive information. There are various types of
communication such as utterance/hearing of spoken words, writing/reading of written letters,
and electrical transmission of information.

Among them, there are various standards for communication based on electrical
transmission. This chapter describes a communication standard called CAN.

CAN is a global standard of the ISO (International Organization for Standardization).

51 What is CAN?

CAN stands for Controller Area Network, which is an on-board LAN specification
proposed by Bosch in Germany. It is the most popular on-board control LAN and used in
various parts of a vehicle as shown in “Figure 5-1 Example of on-board CAN application”.

It is now also used not only in vehicles but also in many industries.

1

—| Instrument panel |
|
|
or

—| Power steering |

&)‘:l
Door
Legend
f |:| CAN application
/]

CAN bus

——

Figure 5-2 Example of on-board CAN application

FUﬁTSU [AN07-00202-3€

The features of CAN can be classified into the following five points.
1. Multi-master communication

CAN employs the multi-master system in which each node is allowed to start
communication as desired. The timing of a start of communication is occurrence of an
event. The word “event” mentioned here indicates an occasion at which a node needs to
start communication.
CAN avoid conflicts in communication through mediation with node signals if more
than one event occurs on nodes simultaneously. This mediation is called arbitration.

2. Bus-type topology
The CAN topology is the bus type. The maximum number of nodes depends on the
communication speed; in the case of 1M bits/sec, up to 30 nodes are allowed. This is
specified as a regulation.

3. Differential transmission system
Taking account of influence from noise on the transmission paths, CAN employs the
differential transmission system in which the voltage difference between two signal
lines is used to determine “0”/”’1”. The signal lines are respectively called CANH and
CANL and the voltage difference between them is used to determine the bus level. The
differential is used to determine logical “0”/”1”. As shown in “Figure 5-3 CAN bus
signal levels”, the bus status of logical “0” is called dominant and the bus status of
logical “1” is called recessive. The communicable distance depends on the
communication speed; in the case of 1M bits/sec, up to 40 m is allowed. This is also

specified by a regulation.

Voltage:
R --------- '- -----------------
2.5
sy RIS S S T
Logical “1” | Logical “0” i Logical “1”
Recessive Dominant L ¢ Recessive CANH
— CANL

Figure 5-3 CAN bus signal levels

95

FUﬁTSU [AN07-00202-3€

4. High-speed version and low-speed version
There are two CAN specifications with different communication speeds. One of them is
High-speed-CAN. High-speed-CAN is standardized as ISO11898 and its maximum and
minimum communication speeds are 1 Mbits/sec and 125 kbits/sec. The other is
Low-speed-CAN. Low-speed-CAN is standardized as ISO11519 and its maximum
communication rate is 125 kbits/sec. The communication speeds currently popular are, in
order of rates, 500 kbits/sec, 250 kbits/sec, 125 kbits/sec, 83.3 kbits/sec, 33.3 kbits/sec and
so forth.

5. Node control with error counters against errors
CAN supports five types of error detection. Each node has error counters. If an error occurs,
either counter is increased by a specified count. On the contrary, when communication is
successful, the counter is decreased by a specified constant. The communication status of
each node is determined by the values of the error counters. This mechanism serves to limit

communication by node.

5.2 CAN specifications

This section provides brief descriptions of the CAN specifications.

For more information about the specifications, access the web site of the CAN promoting

organization CiA (CAN in Automation) (http://www.can-cia.org/) and make a registration;

you can get the specifications.

521 CAN frame configurations
This section describes frames that are the fundamental communication unit of CAN.
CAN provides four types of frames, which are respectively named the data frame, remote frame,

error frame, and overload frame as shown in “Figure 5-4 CAN frame configurations”.

96

http://www.can-cia.org/

FUﬁTSU [AN07-00202-3€

Arbitration | Control Data field CRC field ACK
SOF field field : field | EOQF

Data frame

Arbitration | Control CRC field ACK EOF

50K + field .
Remote frame field field |
Error
Error flag field | delimiter |
Error frame field
Overload
Overload flag delimiter
field field

Overload frame

Figure 5-4 CAN frame configurations

1. Data frame

Transfer format for data transmit. It consists of seven fields.

Field name Description
Start of frame (SOF) 1-bit field containing “0” that indicates the start of a data frame
Arbitration field Field that determines the priority of the data. This field is also

called the ID field and there are two types of format; standard
format and extended format. The standard format is 12 bits and

extended format is 32 bits.

Control field 6-bit field that indicates the length of the data field.

Data field 0-byte to 8-byte field that stores real data.

CRC field 16-bit field that serves to allow a check of the transmitted frame
validity.

ACK field 2-bit field that is used to notify of successful reception.

End of frame (EOF) 7-bit field containing “1” that indicates the end of the data
frame.

Table 5-1 Data frame structure

97

FUﬁTSU [AN07-00202-3€

2. Remote frame
Usually, in CAN, a form of transmit of communication information to a node is
generally used, but it is also allowed to request a specific node to transmit specific
data. For this purpose, the remote frame is available.
The remote frame has almost the same configuration with the data frame; it consists
of six fields except the data field. The control field of the remote frame indicates the

length of the data field for the requested data.

98

(e8]
FUJITSU

3. Error frame

IAN07-00202-3E|

Transfer format immediately sent on error detection on a node. The error frame

consists of two fields.

Field name

Description

Error flag

This is a 6 to 12 bit field that indicates the error type.

Error delimiter

of the error frame.

This is a field where the 8th bit is “1” to indicate the end

4. Overload frame

Table 5-2 Error frame structure

Transfer format sent to indicate that the node is in unreceivable status.

Field name

Description

Overload flag

6-bit to 12-bit field that indicates the type of overload.

Overload delimiter

error frame.

8-bit field containing “1” that indicates the end of the

Table 5-3 Overload frame structure

99

FUﬁTSU [AN07-00202-3€

5.2.2 Arbitration
CAN employs the multi-master communication system, so any node can start communication.
But, the number of communication sessions actually allowed on one bus is only one. Each node is
cyclically checking whether the bus is the status of transmission. When there is no transmission on
the bus, communication is started, but if more than one node starts transmission, they conflict.
Against this, CAN performs arbitration to give priority to one with a lower ID for transmission.

This section describes the arbitration.

The arbitration is carried out by comparison between the ID and the bus level by bit as shown in
“Figure 5-5 Operation of the arbitration”. Bit 10 to 7 of Node 1 and Node 2 are the same as the bus
level. This indicates that both Node 1 and Node 2 are transmitting signals. But, Bit 6 of Node 1 is
set to “0” and that of Node 2 is set to “1”. The bus level is “0”, so Node 2 recognizes that the frame
is not of its own communication and stops the transmission immediately. Node 1 keeps on

transmitting. After Node 1 ends its communication, Node 2 resumes transmission.

SOF Arbitration field Control field
:9 1 8:716:!5:413:2:1 0 RTR
Node 1
Node 2
Bus level,

\

Node 1 is the same as the bus level, so Node 2 stops
transmission.

Figure 5-5 Operation of the arbitration

The bus status is determined according to the logical product of IDs, so “0” is prior to “1”. This

means that a lower ID takes priority.

100

(e8]
FUJITSU

IAN07-00202-3E|

A practical communication flow shown in “Figure 5-6 Example of arbitration among nodes” is

as described below. First, Node 1 and Node 2 starts transmission simultaneously. The arbitration

results in giving priority to the Node 1 transmission with a lower ID. After Node 1 ends its

transmission, Node 2 resumes transmission.

After that, Node 1 and Node 3 starts transmission simultaneously. The arbitration is also

performed and results in giving priority to the Node 3 transmission. After that, Node 4 starts

transmission as soon as Node 3 ends its transmission. On this occasion, arbitration between Node 1

retransmission and Node 4 transmission is performed. This results in transmission in order of Node

4 to Node 1. That is, setting a lower ID to those of preference allows priorities to be settled for

communication.

The ID is assigned by the command, information, and type of transmit data. The ID settings can

be configured as desired.

Completion of
Node 1
transmission

Start of
transmission

Start of
transmission

Completion of Completion of Completion of

Node 3 Node 4
transmission transmission
"

Start of
transmission

NS

Node 1
transmission

ID:0x10 13050
Node | —325% > S ——— >

ID:0x20
Node2 —ai ¥ >

ID:0x30
Node 3 Tk 4
_TNJDZU:-:QU
Node 4 Rk >
Node 1 and Node 2 starts transmission | Node 1 and Node 3 starts transmission simultaneously. The

simultaneously. The arbitration results in giving
priority to the Node 1 transmission. Node 1 ends
its transmission, Node 2 resumes transmission.

arbitration results in giving priority to the Node 3 transmission.
Node 4 starts transmission as soon as Node 3 ends its
transmission. On this occasion, arbitration between Node 1
retransmission and Node 4 transmission is performed and it
results in giving priority to the Node 4 transmission. Node 1 is
allowed to start transmission last.

Figure 5-6 Example of arbitration among nodes

101

IAN07-00202-3E|

(e8]
FUJITSU

5.2.3

CAN error management is defined in its protocol. Five types of error detection and three types

Error management

of status are used.
1. Error detection
As shown in “Table 5-4 Description of the error types”, errors that can be detected depends

on whether the node is transmitting or receiving.

Table 5-4 Description of the error types

Error type Transmitting Receiving Description
node node
Bit error Detected if there is a difference between the
© B transmitted data and the bus level.
ACK error Detected if an acknowledgement to
© _ transmission cannot be obtained.
Stuff error Detected if bit stuffing is not applied. Bit
_ © stuffing is to set an inverted bit by 5 bits if the
number of successive bits with the same level
is 5 or more. This prevents bits with the same
level from being successive over 6 bits.
CRC error Detected if CRC (cyclic redundancy check)
o © fails on the received data.
Format error Detected if the received data does not confirm
o © to any of the frame formats.

2. Statuses
Each node has error counters whose value depends on the status. The error counters of the
nodes are named TEC (transmit error count) and REC (receive error count) intending
statuses are as described below.

transmission and reception. The three

Table 5-5 Three statuses

Status Description

Error active The node is normally joining in the bus.

Error passive

Bus off

The node has frequent errors so it is influencing the bus.

The node is disconnected from the bus. To restore to the bus, the bus needs to

satisfy the restoration condition.

102

FU(]}iJTSU [AN07-00202-3€

Transition between the statuses is described below along the example shown in “Figure 5-7
CAN status transition”. The initial status of a node is error active. In this status, occurrence of
errors increases the TEC/REC counters.

If either of the TEC/REC counters comes to 127 or higher, the status of the node changes to
error passive. In this status, the node remains communicable and the values of the counters
decrease whenever a communication session is normally carried out.

When both the TEC/REC counters decrease to 127 or less, the status of the node returns to error
active.

If the TEC counter increases after the node comes to error passive and the count comes to 255
or higher, the status of the node changes to bus off.

If the status of the node becomes bus off, the node cannot be restored to error active unless the

restoration condition that successive 11-bit recessive is received 128 times is satisfied.

Initial status

-

TEC =127
and
REC = 127

Reception of successive
TEC > 127 11-bit recessive 128 times

or
REC > 127

Error passive (4) TEC > 255.._

TEC: Transmit error counter
REC: Receive error counter

Figure 5-7 CAN status transition

103

(o8]
FUJITSU

IAN07-00202-3E|

5.3 Using the microcontroller to perform CAN communication

This section describes how to perform practical CAN communication with the microcontroller.

On the board, as shown in “Figure 5-8 CAN circuit”, the microcontroller is connected with the

CAN transceiver (MAX3058). TX on the microcontroller is used for transmission and RX is used

for reception. Signals transmitted/received are transferred to CAN-High and CAN-Low as the

differential signals on the bus through the CAN transceiver.

Vce

Vce

CN6

Ci1:
01uF
DTA144E
r======-= I
! ! R37:
GND R3S 120Q
MB96F356 ! !
|]
LEDS: MAX3058 . .
SML-210LT 3 1
(RED) Vce CANH
GND Common
17 1 [§ mode filter 2
TX L TXD CANL
L1:
16 4 5 3
RX RXD SHDN ZJYS81RS-
2P24T-GO1
8 2 -
TR2: RS GND L J : ANN : I
DTA144E ! Co GND
I 0Q
R38: L, 1
R40: 0Q
3.3kQ “GND
Y)Y
LEDG: GND
SML-210LT

GND

Figure 5-8 CAN circuit

104

(e8]
FUJITSU

IAN07-00202-3E|

The registers used for entire CAN communication control on the microcontroller are as shown

in the following table.

For more information of the registers, refer to the microcontroller hardware manual.

[Address Register name Abbr. |Access Initial value Remarks

Base+0x00 CAN control register CTRLR [R/'W 0x0001

Base+0x02 CAN status register STATR R, R/W |0x0000 Boff, Ewarn, Epass = Read-only
RxOk,TxOk,LEC = R/W

Base+0x04 CAN error counter ERRCNT R 0x0000 Read-only

Base+0x06 CAN bit timing register BTR R/W 0x2301 'Writable when
Init(CTRLR)=CCE(CTRLR)="1"

Base+0x08 CAN interrupt register INTR R 0x0000 Read-only

Base+0x0A CAN test register TESTR R/W 0x0000 ‘Writable when Test(CTRLR)="1"
"r" is the CAN_RX level value.

Base+0x0C CAN prescaler extension register |BRPER R/W 0x0000 Writable when CCE(CTRLR)="1"

Table 5-4 CAN register list 1

105

(e8]
FUJITSU

IAN07-00202-3E|

Address Register name Abbr. Access | Initial value Remarks

Base+0x10 IF1 command request register IFICREQ | R,R/W |0x0001 BUSY bit is R/W in Basic mode,
and read-only in normal mode
Message Number is R/'W

Base+0x12 IF1 command mask register IFICMSK | R/'W 0x0000

Base+0x14 IF1 mask register 1 IFIMSK1 | R/'W Oxftf

Base+0x16 IF1 mask register 2 IFIMSK2 | R/'W Oxfttf

Base+0x18 IF1 arbitration register 1 IFIARB1 | R/'W 0x0000

Base+0x1A IF1 arbitration register 2 IFIARB2 | R/W 0x0000

Base+0x1C IF1 message control register IFIMCTR | R/'W 0x0000

Base+0x20 IF1 data register Al IFIDTA1 | R/W 0x0000

Base+0x22 IF1 data register A2 IFIDTA2 | R/'W 0x0000

Base+0x24 IF1 data register B1 IFIDTB1 | R/'W 0x0000

Base+0x26 IF1 data register B2 IFIDTB2 | R/W 0x0000

Base+0x40 IF2 command request register IF2CREQ | R,R/W |0x0001 BUSY bit is R/W in Basic mode,
and read-only in normal mode
Message Number is R/'W

Base+0x42 IF2 command mask register IF2CMSK | R/W 0x0000

Base+0x44 IF2 mask register 1 IF2MSK1 | R/'W Oxfttf

Base+0x46 IF2 mask register 2 IF2MSK2 | R/W Oxfftf

Base+0x48 IF2 arbitration register 1 IF2ARB1 | R/W 0x0000

Baset0x4A IF2 arbitration register 2 IF2ARB2 | R/W 0x0000

Base+0x4C IF2 message control register IF2MCTR | R/'W 0x0000

Base+0x50 IF2 data register A1l IF2DTA1 | R/'W 0x0000

Base+0x52 [F2 data register A2 IF2DTA2 | R/'W 0x0000

Base+0x54 [F2 data register B1 IF2DTBI | R/W 0x0000

Base+0x56 [F2 data register B2 IF2DTB2 | R/W 0x0000

Table 5-5 CAN register list 2

106

(e8]
FUJITSU

IAN07-00202-3E|

Address Register name Abbr. Access Initial value Remarks
Base+0x80 CAN transmit request register 1 TREQRI1 R 0x0000 Read-only
Base+0x82 CAN transmit request register 2 TREQR2 R 0x0000 Read-only
Base+0x90 Data update register 1 NEWDTI1 R 0x0000 Read-only
Base+0x92 Data update register 2 NEWDT2 R 0x0000 Read-only
Base+0xA0 CAN interrupt pending register 1 INTPND1 R 0x0000 Read-only
Baset0xA2 CAN interrupt pending register 2 INTPND2 R 0x0000 Read-only
Base+0xB0 CAN message valid register 1 MSGVALLI R 0x0000 Read-only
Base+0xB2 CAN message valid register 2 MSGVAL2 R 0x0000 Read-only

Table 5-6 CAN register list 3

107

[e®)
FUJITSU

IAN07-00202-3E|

The steps for initializing CAN in the sample project are introduced simply in the following

diagram.

Set CAN interrupt level and port to use
Function: C CAN 1 ICR_And_Port()

Set CAN baud rate
Function: C_ CAN_1 Baudrate()

Set transmit message buffer
Function: init CAN 1 Tx();
Set receive message buffer

Function: init CAN 1 Rx();

Figure 5-9 Initializing CAN

108

FUﬁTSU [AN07-00202-3€

5.4 Understanding and running the program for CAN
communication
This section provides descriptions of the sample program that can serve for practical CAN

communication.

5.4.1 CAN communication configuration
“Table 5-7 CAN communication conditions of the sample program” shows the CAN

communication conditions of the sample program.

Condition Value

Communication speed 250 Kbps

CAN clock frequency 16 MHz
Bit time (NBT) 16
Sample point 81.3%

Sync. jump width (SJW) | 2

Sample count (SAM) 1

Data length 8 bytes

Table 5-7 CAN communication conditions of the sample program

109

(e8]
FUJITSU

IAN07-00202-3E|

“Table 5-8 CAN message IDs in the sample program” provides a description of the message IDs

used for CAN communication.

ID Description Communication
direction
0x101 Motor operation start/stop command Receive
0x102 Motor operation rotation speed/Rotation | Receive
direction/Brake command
0x103 Temperature sensor measurement command Receive
0x201 Motor rotation information Transmit
0x202 Temperature sensor information Transmit

Table 5-8 CAN message IDs in the sample program

Details of the IDs are as shown below.

1. ID:0x101
byte 0 Motor operation instruction
byte 1 Motor rotation direction
byte 2 Motor rotation speed
byte 3
byte 4 A/D maximum value
byte 5
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
Motor operation 0: Stop 1: Start —
command
Motor rotation | 0: Clockwise 1: Counterclockwise —
direction
Motor rotation speed | 0 to 65535 The motor rotation speed and A/D
maximum value are used for
A/D maximum value | 0 to 65535 conversion of the speed to a

percentage of 0% to 100%.

2. 1D: 0x102
byte 0 Motor rotation direction
byte 1 Brake application
byte 2 Motor rotation speed
byte 3
byte 4 A/D maximum value
byte 5
byte 6 Reserved
byte 7 Reserved

110

FUﬁTSU [AN07-00202-3€

Field name Setting value Remarks
Motor rotation 0: Clockwise 1: Counterclockwise —
direction
Brake application 0: Brake released 1: Brake applied —
Motor rotation speed | 0to 65535 The speed is converted to between 0
A/D maximum value | 0to 65535 and 100% using the motor rotation
speed and A/D maximum value.

3. ID: 0x103
byte 0 Temperature
byte 1 Reserved
byte 2 Reserved
byte 3 Reserved
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
Temperature 0: Start 1: Stop -
measurement
command
4. ID: 0x201
byte 0 Motor rotation direction data
byte 1 Brake application information
byte 2 Motor rotation speed
byte 3 information
byte 4 A/D maximum value
byte 5 information
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
Motor rotation 0: Clockwise 1: Counterclockwise -
direction information
Brake application | 0: Brake released 1: Brake applied -
information
Motor rotation speed | 0to 65535 The motor rotation speed and
information A/D maximum value are used for
A/D maximum value | 0to 65535 conversion of the speed to a
information percentage of 0% to 100%.

111

(e8]
FUJITSU

5.

IAN07-00202-3E|

ID: 0x202
byte 0 |Temperature information
byte 1 Reserved
byte 2 Reserved
byte 3 Reserved
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
Temperature 0to 50
information

112

FUﬁTSU [AN07-00202-3€

5.4.2 Sample program sequence
The flowcharts of the sample program are shown in the following diagrams. First, the internal
operating clock of the microcontroller is initialized. Next, the port output for driving the LED is
initialized. After this, the A/D converter, external interrupts, CAN, and reload timer are initialized.
When an external interrupt occurs due to switch input, CAN transmission and reception (primarily
motor control) starts. The reload timer generates interrupts at a fixed interval, which start the A/D
converter. The A/D conversion result (used as control data for the motor rotation speed) is then sent

via CAN from within the interrupt processing routine for A/D conversion completed.

Start

A 4

Clock initialization

A 4

Port initialization

A 4

A/D converter initialization

A 4

External interrupts initialization

|

CAN initialization

A 4

Remote timer initialization A External interrupt processing
(SW3, SW5)

Reload timer interrupt processing

Infinite loop
Display LED

| A/D interrupt processing |

M | CAN interrupt processing |

Figure 5-10 CAN communication flowchart

113

FUﬁTSU [AN07-00202-3€

[SW3 external interrupt processing]
v
[Clear interrupt source of external interrupt 0]
v
Update CAN MSG and
send CAN MSG

(motor run/stop)

Figure 5-11 SW3 (external interrupt 0) flowchart

[SWS5 external interrupt processing

A 4

[Clear interrupt source of external interrupt 2

v
Update CAN MSG and send CAN

MSG (brake/resume)

If pressed for a long time, issue the
temperature measurement mode

command.

Figure 5-12 SW5 (external interrupt 2) flowchart

114

FUﬁTSU [AN07-00202-3€

[Reload timer interrupt processing]

A 4

[Clear interrupt source]

v
Activate A/D converter

Figure 5-13 the reload timer interrupt flowchart

[A/D interrupt processing]

A 4

[Clear interrupt source]

Check SW4 input level
and determine motor

rotation direction

Update CAN MSG and
send CAN MSG (rotation
speed)

Figure 5-14 the A/D converter interrupt flowchart

115

FUﬁTSU [AN07-00202-3€

[CAN interrupt processing]

l

Interrupt source No error

determination

\4

Error processing Data send/receive post-processing

Clear error flag Clear send/receive flag

Figure 5-15 the CAN interrupt flowchart

Check the following folder in the sample program. This folder contains several files. First try

opening the Main.c file in ¥bits pot_white SampleProgram¥CAN¥Src.

116

FUﬁTSU [AN07-00202-3€

Main.c:

The main function initializes each peripheral function and then enters an infinite loop that

updates the LED display.
void main(void)
{
__set il(7); // interrupt priority "level 7"
__EIO; // enable interrupt
set_clock(&Clock cfg); // set clock
Port_Init(); // Port Initial A
ADO_Init(); // AD finitial
Initialization of each
C_CAN_1 Driver(); /I CAN initial
peripheral function
Ext_Int Init(); // Ext Int initial
set_reload_timer 1(&Reload timer 1_init); // set reload timer 1 to trigger CAN)
while(1)
{
__wait nop();
LED_display(); « LED display
__wait_nop();
}
}

117

FU(]}iJTSU [AN07-00202-3€

C CAN_1 Driver 1l.c:
The following CAN initialization is performed in C_CAN_1 Driver l.c.

void C_CAN_1_Driver(void)

{

/* initial ICR port baudrate of CAN */
C_CAN_1_ICR_And_Port();
C_CAN_1_Baudrate();

/* initial CAN TX and RX in other C file (C_CAN 0 _driver 2.c)*/
init CAN_1_Tx(); « Call CAN transmit buffer configuration function

init CAN_1_Rx(); « Call CAN receive buffer configuration function

/**************** FunCtiOn deﬁnition *********************/
static void C_CAN_1_ICR_And_Port(void) | CAN interrupt level setting and port Initialization
{

10_ICR=0x2006; // CANO TX/RX/Error status Int level set ICR_IX=32, ICR_IL=6
10_CAN1.COERI1.byte=0x01; // port for CAN Tx is enabled*/
10_PIERO04.bit.IE2=0x01; // enable digital input (RX0)

}

[Rk K Function definition %% %% % kskok sk ks sk sk ko /

static void C_CAN_1_Baudrate(void) | CAN baud rate settings

{

/************** CTRLR for baudrate Setting *****************************/
10_CANI1.CTRLR1.word = 0x0041; /I CCE=1 Init=1 for BTR and BRPER setting
I0_CANI1.BTRI1.bit.BRP = ((CAN1_Prescale-0x01)&0x003F); // to get Lower 6 bit

10_CAN1.BRPERI.bit.BRPE = ((CAN1_Prescale&0x03C0)/0x40); // to get Higher 4 bit

/************** blt tlmlng Setting *****************************/

I0_CANI1.BTR1.bit. TSEGI = CAN1_TSegl-0x01;
10_CAN1.BTR1.bit. TSEG2 = CAN1_TSeg2-0x01;
10_CANI.BTR1.bit.SJTW = CAN1_SIW-0x01;

Skt finish CAN baudrate initial®® skt stk
10_CANI1.CTRLR1.word = 0x0001; /I CCE=0 Init=1-->over bit timing setting

118

FUﬁTSU [AN07-00202-3€

C_CAN_1 Driver 2.c:
The CAN transmit and receive buffers are initialized in C_CAN_1 Driver 2.c.

/***
* TxO initial step:
1,set IF registor(CMSK,MSK,ARB,Control,Data)
2,wait transmit RFx to message RAM

sk sk sk Rk Rk Rk R sk Rk R R R sk sk sk sk sk sk sk R sk Rk s okokok o/

void init CAN_1 Tx(void) | CAN transmit buffer settings

{
/*MSK select*/
10_CAN1.IFICMSK1.word=0x00F7; /*WR/RD=1 Mask=1 Arb=1 Control=1
CIP=0 TxRgst/NewDat=1 DataA=1 DataB=1%*/
/*MSK Data*/
10_CANI1.IFIMSK1.lword=0xFFFC0000; /*MXtd=1 MDir=1 res=1 MID28-MID18=1
MID17-MID0=0*/
/*MCTR*/
I0_CAN1.IFIMCTR1.word=0x1888; /*NewDat=Nouse MsgLst=0 IntPnd=Nouse
UMask=1 TxIE=1 RxIE=0 RmtEn=0
TxRgst=0(Nouse) EoB=1 DLC=8*/
/*CTRLR*/
10_CAN1.CTRLR1.word=0x000B; /*Test=0 CCE=0 DAR=0 EIE=1 SIE=0 IE=1 Init=1%*/
}

/***
* RxO0 initial step:
1,set IF registor(CMSK,MSK,ARB,Control,Data)
2,transmit RFx to message RAM
3,Init = 0 enable CAN macro
***/

id init_CAN_I_Rx(void ~ i
void init_CAN_1_Rx(void) | CAN receive buffer settings

{
/*MSK select*/
I0_CANI1.IF2CMSK 1.word=0x00F0; /*WR/RD=1 Mask=1 Arb=1 Control=1
CIP=0 TxRgst/NewDat=0 DataA=0 DataB=0*/
/*MSK Data*/

10_CANI1.IF2MSK 1.lword=0xFFFC0000; /*MXtd=1 MDir=1 res=1 MID28-MID18 all=1
MID17-MIDO all=0*/
/*Arb Data*/
10_CANI1.IF2ARB1.lword=0x88040000; /*MsgVal=1 Xtd=0 Dir=0 ID(28-18)=0x201*/

/*MCTR*/
I0_CAN1.IF2MCTR1.word=0x1488; /*NewDat=Nouse MsgLst=0 IntPnd=Nouse
UMask=1 TxIE=0 RxIE=1 RmtEn=0
TxRgst=Nouse EoB=1 DLC=8%*/

/*CTRLR*/

10_CAN1.CTRLR1.word=0x000B; /*Test=0 CCE=0 DAR=0 EIE=1 SIE=0 IE=1 Init=1*/
/*CREQ¥*/

10_CANI1.JIF2CREQ1.word=0x0004; /*transmit IFx to message RAM

use buffer4*/

/* for buffer5 */
/*Arb Data*/

10_CANI1.IF2ARBI1.lword=0x88080000; /*MsgVal=1 Xtd=0 Dir=0 ID(28-18)=0x202*/
/*CREQ*/

10_CANI1.IF2CREQ!1.word=0x0005; /*transmit IFx to message RAM use buffer5*/

I0_CANI1.CTRLR1.bit.INIT = 0; /*enable CAN controller*/

119

FUﬁTSU [AN07-00202-3€

C CAN _1 Int.c:

CAN interrupt processing is performed in C CAN 1 Int.c. First, the status of CAN
communication errors is checked by the State judge 1() function. If an error has occurred,
recovery processing is performed. If there are no errors, the transmission and reception
post-processing is performed by the TxRx_Judge 1() function. (For example, the transmission

complete flag is cleared or the receive data is saved)

/** judge state only when INTR==0x8000 **/ | Check whether or not an error occurred during CAN commu
static void State judge 1(void)
{

if(10_CANI.STATR1.bit. BOFF==0x01) /1 bus off

{
Error_State 1=0x01;

/*Restart bus*/

I0_CANI1.CTRLR1.bit.INIT = 0; // enable CAN controller

while((I0_CAN1.ERRCNT1.bit. TEC!=0)||(I0_CANI1.ERRCNT1.bit. REC!=0));
// see if recovered

}
if(10_CANI.STATR1.bit. EWARN==0x01) // error warning

{

}
if(!((I0_CAN1.STATRI1.bit.BOFF)|(I0_CANI.STATR1.bit. EWARN)|(I0_CAN1.STATR1.bit.EPASS)))

// error active

Error_State 1=0x02;

{
Error_State 1=0x03; // error active
}
}

/** judge Tx or Rx interrupt **/
static void TxRx_Judge 1(void)
{

| CAN transmit/receive processing

MsgNbr1=IO0_CANI1.INTR1; // stor MsgNbr
if(I0_CANI1.STATR1.bit. TXOK==0x01) // if TxOK
{

10_CAN1.STATR1.bit. TXOK=0x00; /l clear TXOK flag

/* for clear Tx intPnd */
I0_CANI1.IFIMCTR1.word=0x0888; /NEWDAT=0 MSGLST=0 INTPND=0 UMASK=0
/ITXIE=1 RXIE=0 RMTEN=0 TXRQST=0 EOB=1 DLC=8

I0_CAN1.IFICMSK1.word=0x0090; // WRRD=1 MASK=0 ARB=0 CONTROL=1
/I CIP=0 TXREQ=0 DTAA/B=0

10_CAN1.JF1CREQ!.bit. MSGN=MsgNbrl; // IF->RAM

//10_CANO.IF1CMSKO0.word=0x0010;
//I0_CANO.IF1CREQO.bit. MSGN=MsgNbr0;

}
else if(I0_CAN1.STATR1.bit. RXOK==0x01) /I if RxOK

{
I0_CAN1.STATR1.bit. RXOK=0x00; // clear RxOK flag

/*fetch data from msg RAM*/
I0_CANI1.IF2CMSK 1.word=0x007F; /*WR/RD=0 Mask=1 Arb=1 Control=1
CIP=1 TxRgst/NewDat=1 DataA=1 DataB=1%*/

10_CANI1.JF2CREQ!.bit. MSGN=MsgNbrl; // transmit msgRAM to IF

hication

120

(e8]
FUJITSU

IAN07-00202-3E|

if(10_CANI1.IF2MCTR1.bit MSGLST==0x01)
{
__wait_nop(); // mag lost
10_CAN1.IF2MCTR1.word=0x1488; / NewDat=0 MSGLST=0 INTPND=0 UMSK=1 TXIE=0
// RXIE=1 RMTEN=0 TXRQST=0 EOB=1
10_CAN1.IF2CMSK1.word=0x0090; // WRRD=1 CONTROL=1 other=0
/I for clear MSGLST
I0_CANI1.IF2CREQ!.bit. MSGN=MsgNbrl;

}
else
{
/*ID(28-18)=0x201%*/
if(I0_CAN1.IF2ARB1.lword&0x 1FFC0000)==0x08040000)
{
__wait nop();
CAN_Rxl1 data0 ID 201.word=IO_ CANI1.IF2DTA11; // save data from buffer to RAM
CAN_Rxl1 datal ID 201.word=IO_CANI1.IF2DTA21; // save data from buffer to RAM
CAN_Rx1 data2 ID 201.word=IO_CANI1.IF2DTBI1; // save data from buffer to RAM
CAN_Rxl1 data3 ID 201.word=IO CANI1.IF2DTB21; // save data from buffer to RAM
CAN_RX1 data ID 201 Received=0x01; // set received flag
__wait_nop();
}
/*ID(28-18)=0x202*/
else if((I0_CANI1.IF2ARB1.lword&0x 1FFC0000)==0x08080000)
{
__wait_nop();
CAN_RxI1 data0 ID 202.word=IO_CANI1.IF2DTA11; // save data from buffer to RAM
CAN _Rxl1 datal ID 202.word=I0_CANI1.IF2DTA21; // save data from buffer to RAM
CAN_Rxl1 data2 ID 202.word=IO CANIL.IF2DTBI11; // save data from buffer to RAM
CAN_Rx1 data3 ID 202.word=IO_CANI1.IF2DTB21; // save data from buffer to RAM
CAN_RXI1 data ID 202 Received=0x01; // set received flag
__wait_nop();
}
else
{
__wait nop();
__wait_nop();
}

121

6

6.

FUﬁTSU [AN07-00202-3€

Try to use LIN communication

Communication is to send/receive information. There are, in fact, various communications
formats, such as transmission by people talking, letters written in script, and electronic
communications, etc.

Among these, there are various plans for communications using electricity. This chapter explains
communications in a standard called LIN.

1 Whatis LIN?

LIN is an acronym for Local Interconnect Network, and is a type of communications protocol for
vehicle-mounted LAN. The LIN consortium was proposed in 1999 with the objective of enabling
a less expensive configuration than CAN, which is the most widespread control system
vehicle-mounted LAN. Thereafter, after several version upgrades, LIN2.0, which has added
diagnostic and other functions, was launched in 2003. Further, in 2006, the version was upgraded
to LIN2.1.

This section explains LIN applications. Concomitant with multi-function vehicles, the
existence of a network in vehicles also became indispensable. Currently, vehicle-mounted LANs
are broadly divided into two classifications: control systems, which are concerned with motoring
and the vehicle body, and information systems, which connect devices such as the satellite
navigation system and audio, and so different LANs are used depending on the application. In
particular, vehicle body devices such as electric mirrors and power windows, which are classified
as body systems, do not require such fast or detailed control. Consequently, they are also

inexpensive. This is where LIN is used.

122

FUﬁTSU [AN07-00202-3€

T I

Foe#u— | seats e
Accessories ® Power seat and motor control Rear .
® Wipers ® Passenger detection : Eear w%ndow heater
® Back mirror ® Hez}ter : Rear E?iir
® Switch control ® Switch control ear blinkers

T

| I,

N1

| |

0 (11|

| i |

\ = = s

SO T 4‘—0‘4"" I

w |
T "% | F? i

He Doors

® Motor control
® Rear panel

® Switch control
® Power windows
® Mirror control

Figure 6-1 Example of vehicle LIN applications

The characteristics of LIN used in the way described above, are collated and introduced in the
following five points.
1. Single master communication
LIN has two types of communication nodes. One is the “master” (sender).This controls the
start of all communications. The other is the slave (recipient).The slave responds to commands
sent by the master. LIN communication must start from the master, and cannot be started by a
slave. Further, the LIN communication mode designated as the master is pre-determined. This

format is called a “single master format”.

2. A maximum of 15 slave nodes can be connected using bus wiring.
The LIN network configuration (topology) is a bus. With single master LINs, the slaves
communicate only when they receive commands from the master, so there is no conflict of

signals in the bus. A maximum of 15 slave nodes can be connected to one master.

123

[e®)
FUJITSU

IAN07-00202-3E|

Master

(Door)
Communications can be ! Communications cannot be
started from the master i ECU started from the slave!!

N/
O

-

L

X

an o] B]
t4 tt tft tfe
LN BN B N
ECU ECU ECU ECU
Slavel Slave2 Slave3 Slavel5
(Mirror) (Door Lock) (Windows)
L J

R

Up to 15 slaves max. can be connected

: Transceiver IC (Electronic component for sending and
receiving data)

Figure 6-2 Main LIN network configuration

3. Wiring is completed using a single wire

The on-board ECUs are connected to the LIN network via transceiver ICs (electronic
components that send and receive data), and each ECU is connected on the bus from the
master to a slave. An ordinary single metal wire is used as the bus cable. CAN combines two
opposing metal wires to make one twisted pair cable. FlexRay uses two twisted pair cables.
Consequently, LIN has the advantage of using a single cable for numerous network wires,
unlike CAN and FlexRay, which use twisted pair cables.

The communications distance is 40m max. LIN can be used in combination with CAN, and in
such cases, CAN is most frequently used as the core network, and LIN is used as the branch

network.
4. The baud rate is 20kbps max.

L The baud rate according to LIN specifications is within the range 1 to 20kbps. Practically,

the baud rate of LINs used as LANs depends on the individual vehicle manufacturer’s system

124

FUﬁTSU [AN07-00202-3€

specifications, but generally one of the following is used: 2,400kbps, 9,600kbps, or
19,200kbps.

5. Communications errors are detected only, and subsequent processing depends on the
application

With LIN, communications errors are detected based on information as to whether

transmitting and receiving has been performed successfully. Processing after an error has been

detected, however, is not specified. Here, LIN error processing can be customized according to

the application. CAN and FlexRay management of the communications status depends on the

counter value, which is called the error counter, is featured by the specifications, but in LIN, if

an error occurs, simple error processing is possible, in which LIN merely waits for the next

command.

6.2 LIN specifications

This section explains briefly the LIN specifications.

For detailed specifications, access the LIN consortium website (http://www.lin-subbus.org/), and

register your name and e-mail address to get a specifications.

6.2.1 Lin frame configuration
This section explains frames, which is the basic unit of LIN communication.
LIN frames are configured using “headers” and “responses”. As shown in “Figure 6-3 LIN
communication flow”, the basic communications flow is a procedure in which the master sends
headers to the slaves, and the slaves implement processing according to the contents of the

headers received, and then send a response to the master.

125

http://www.lin-subbus.org/

[e®)
FUJITSU

Master

Header

IAN07-00202-3E|

Slave

Identifier

Response

Figure 6-3 LIN communication flow

Further, headers are configured using three fields: Synch break (Break), Synch field (Sync byte),

and ID field (Identifier), and responses are configured using two fields: Data field and Checksum

field.

Header

A 4

A

Response

.

I D

DATAI1

DATAN

Check Sum

—>
Break Sync Byte ID Field
: Start bit(“L”)
: Stop bit(“H")

:Interval

:Response space

: Break delimiter

[i — o — —|

:Inter-frame space

Data Field

Figure 6-4 LIN frame configuration

126

A 4

Checksum Field

Y

FUﬁTSU [AN07-00202-3€

1. Break
Break, which are in the header fields, are variable-length fields that indicate the start of a
new frame. They comprise 13 to 16 “0” bits (fixed value zero) min. The general frame

length is 13 bits.

2. Sync Byte
Sync byte, which follow on from breaks, are 10-bit fixed-length fields that synchronize
the master and the slaves. Sync byte configurations comprise 1 starter bit (“0”), 8 data
bits, and 1 stop bit (“1”).The 8-bit data bit has the fixed value “0x55” (which is expressed
as “0x01010101” in binary).If the slave receives the 0x55 in the synch byte send by the

master normally, the master and slave are synchronized.

3. ID field

The “ID field”, which is the final header field and comes after the synchronous byte, is a
10-bit fixed-length field that specifies the frame type and objective. ID fields have values
from “0” to “63” (6 bits).This ID field is also used by the master to specify individual
slaves. Slaves judge what type of frame has been sent and if it was intended for them
according to the ID field sent by the master, and send responses to the master accordingly.
Further, the ID field has a 2-bit parity bit following the “0” to “63” (6 bits).This is
bracketed by a 1-bit starter bit and 1-bit stop bit in the same way as the synchronous byte,
so overall the field is 10 bits in length.

4. Data field
The “data”, which is in the response header, is a variable-length field that literally
transfers data. The data in the number of bytes that has been predetermined (1 to 8 bytes)
is sent. As there is a 1-bit start bit and 1-bit stop bit bracketing the 1-byte data in the same
way as the header synchronous byte, 1 byte of data is configured from 10 bits.

Consequently, the total data field length is “number of bytes x 10 bites”.

5. Checksum field
The “checksum”, which follows the data, is a 10-bit fixed-length field for checking data.
The data recipient checks whether there is an error in the data by comparing the data
received with the checksum. The checksum field length is also 10 bits: a start bit and a

stop bit added to the 8-bit checksum in the same way as the synchronous byte.

127

FUﬁTSU [AN07-00202-3€

6.3 LIN communication flow

In general LIN communication, one master communicates with numerous slaves. LINs, which
adopt a bus topology, connect the master and all the slaves using a single wire, so header
electrical signals sent by the master are transmitted by the wire to all the slaves. The slaves check
the frame ID, and if the header is addressed to them, sent a response to the master according to
the content received. If the header received is addressed to another slave, it is ignored. In this
way, 1-to-1 communication between the master and each slave is achieved.

This section explains the actual trading of communications. Currently, functions are allocated to
each of the slaves from 1 to 15.The master first communicates with slave 1 and turns the motor
((1) in Figure 6-6-5 Main LIN network configuration and Figure 6-6-6 Example of
communication sequence between the master and slaves during normal communication), and
next acquires sensor information by communicating with slave 3. ((2) in “Figure 6-6-5 Main LIN
network configuration” and Figure 6-6-6 Example of communication sequence between the
master and slaves during normal communication.) Thereafter, the motor is turned by
communications with slave 2 ((3) in Figure 6-5 Main LIN network configuration and Figure 6-6
Communications sequence between master and slave during normal communications).The
master acquires sensor information from slave 3 again ((4) in Figure 6-5 Main LIN network
configuration and Figure 6-6 Communications sequence between master and slave during normal
communications), and finally turns ON the lamp by communicating with slave 15 ((5) in Figure
5-5 Main LIN network configuration and Figure 6- 6 Communications sequence between master
and slave during normal communications).In this chain of communications, communications
between the master and slaves 2 and 3 are contiguous, and the master processes the motor
turning by communicating with slave 2 using sensor information acquired by communicating
with slave 3 first. In this way, during actual communications the master and multiple slaves

repeatedly communicate on a 1-to-1 basis.

128

FUﬁTSU [AN07-00202-3€

Master

0

(3) (214 L 4
Tr Tr
¢f ¢f it M
Slave 1 Slave Slave 3 | Slave 15 |
otor]' Motor

I Tr 1sceiver IC (electronic component for
ing and receiving data)

Sensor

Figure 6-6 ain LIN ne configuration
Master Slave 1 Slave 2 Slave 3 o Ll R Slave 15
11
Motor
) overat
peration
All communications
start from the master ..
" Acquiring
2) [l [
information
(3} h‘ Motor
< operation
Acquiring
{4::, " sensor
‘ information
{5} } » Lamp
j ON

Figure 6-6-6 Example of communication sequence between the master and slaves during normal

communication

129

FUﬁTSU [AN07-00202-3€

6.4 Communication between master and slave if an error occurs
LIN error processing is not determined by the protocols, and so depends on the application.
Consequently, during design, it is necessary to consider the error detection methods and the
process after the error has been processed. As this is not determined by the protocols in the LIN
specifications either, however, examples of system design if an error occurs are introduced in the
chapter “Status Management”. In the examples introduced, errors are managed by slaves

reporting their own status to the master. This mechanism is described below.

The basic master operation is merely to send the header to the next slave when communications
with the current slave have ended. On the other hand, the slave operation is to perform error
checking when a header is received and when a response is sent. Checksums and other checks
are implemented during reception. When sending, checks are performed by comparing the sent
data and the bus data that performs the monitoring. In this way, the slave identifies its own status,
and inserts the results into the response that is sent to the master. The master identifies the slave
status from the response, and if there is a nonconformance, initializes the slave. In this way, the

error status is completely cleared.

130

FUﬁTSU [AN07-00202-3€

6.5 LIN communication by using the microcontroller
This section describes how to perform practical LIN communication with the microcontroller.
On the board, as shown in “Figure 6-7 LIN circuit”, the microcontroller is connected with the
LIN transceiver IC (TJA1020T). On the microcontroller, SOT is used for transmission and SIN is
used for reception, and SCK controls the transceiver IC as a port. Signals transmitted/received

pass onto the bus through the LIN transceiver.

CN7
EXT PWR
NCCs
VCC5
1l 2 [3IP1
OO0
RAL:
TRS: 5.1kQ
DTAL44E
Ci12:
R43: 0.1uF
Up: 3.3kQ vees
MB96E356 GND U3: D2:
TJA1020T 1SR145
SML-210LT
R42:
GND 8] INH BAT |7
1KQ
soT 2 ® H1xp NWAKE l CNS
1
sin B2 T RXD LIN |6
sck |28 21 NsLp GNDJ2 _T_ c13:
1nF
LIN
GND
TR4:
DTAL44E GND GND
RA4:
3.3kQ

SML-210LT

GND

Figure 6-7 LIN circuit

The registers used for entire LIN communication control on the microcontroller are as shown in
“Figure 6-8 Entire LIN communication control register”.
A description of the registers and their setting values in the sample program are as described in
Table 6-1 Description of the entire LIN communication control registers and setting values”. For

more information of the registers, refer to the microcontroller hardware manual.

131

FUﬁTSU [AN07-00202-3€

Serial control register

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

SCR PEN P SBL CL AD CRE RXE TXE

Serial mode register

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

SMR MD1 MDO OTO EXT REST UPCL SCKE SOE

LIN-UART serial status register
bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

SSR PE ORE FRE RDRF TDRE BDS RIE TIE

LIN-UART receive data register/transmit data register

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

RDR/TDR

LIN-UART extended status control register

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

ESCR LBIE LBD LBLI LBLO SOPE SIOP CcCO SCES

LIN-UART extended communication control register

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

ECCR INV LBR MS SCDE SSM res RBI TBI

LIN-UART baud rate generator register 1
bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

BGR1 -

LIN-UART baud rate generator register 0

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
BGRO

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
ESIR TDRE RDRF RBI AICD

Figure 6-8 Entire LIN communication control register

132

(e8]
FUJITSU

IAN07-00202-3E|

Table 6-1 Description of the entire LIN communication control registers and setting values

Register name

Setting value [function]

Description

SCR_PEN 0 [No parity] Parity enable bit
SCR P 0 [Even parity] Parity selection bit
SCR_SBL 0 [1 bit] Stop bit length selection bit
SCR_CL 1 [8-bit] Data length selection bit
SCR_AD 0 [Data frame] Address/data selection bit
SCR_CRE 1 [Flag clear] Receive error flag clear bit
SCR_RXE 1 [Receive enabled] Receive enable bit
SCR_TXE 1 [Transmit enabled] Transmit enable bit
SMR_MD1 1 [Mode 3] . . .
— Operation mode selection bit

SMR_MDO 1 (Asynchronous LIN mode)
SMR_OTO 0 [Use external clock] One-to-one external clock selection bit
SMR_EXT 0 [Use baud rate generator] External clock selection bit
SMR_REST 0 Transmit reload counter restart bit
SMR_UPCL 1 [LIN-UART reset] (ligf/‘?vlj; 6?ice)sgé‘ii)mmable clear bit
SMR_SCKE gl[lg'?ll}ig"}psgcfiggt I;:lt] or Serial clock output enable bit
SMR_SOE 1 [LIN-UART serial data output pin] Serial data output enable bit
SSR_BDS 0 [LSB first (send from least significant bit)] | Transfer direction selection bit
SSR_RIE 1 [Receive interrupt enabled] Receive interrupt request enable bit
SSR_TIE 0 [Transmit interrupt disabled] Transmit interrupt request enable bit
ESCR_LBIE glg;tl)llic?]y neh break detection interrupt LIN synch break detection interrupt enable bit
ESCR_LBD 0 [LIN synch break detection clear flag] LIN synch break detection flag
ESCR_LBL1 0

= LIN synch break length selection bit
ESCR_LBLO 0 [13-bit length]
ESCR_SOPE 0 [Serial output pin access disabled] Serial output pin direct access enable
ESCR_SIOP 0 Serial input/output pin direct access
ESCR_CCO 0 Continuous clock output enable bit
ESCR_SCES 0 Serial clock edge selection bit
ECCR_LBR 0 [Do not generated LIN synch break] LIN synch break generate bit
ECCR_MS 0 Master/slave mode selection bit
ECCR_SCDE 0 Serial clock delay enable bit
ECCR_SSM 0 Start/stop bit mode enable bit
BGR BGRI1 0x16 (When set to 9600bps) Baud rate generator 1
BGR_BGRO 0x66 (When set to 9600bps) Baud rate generator 0

133

FUﬁTSU [AN07-00202-3€

6.6 Understanding and running the program for LIN communication

An explanation of the sample program is given as an example of a program that actually performs
LIN communication. In the bits pot LIN communication, the starter kit operates as the master and

the bits pot yellow operates as the slave.

6.6.1 LIN communication configuration
The LIN communication parameters used by the sample program are summarized in “Table 6-2

LIN communication conditions of the sample program”.

Table 6-2 LIN communication conditions of the sample program

Condition Value
Communication speed 2400/9600 (default value)/19200bps
Peripheral clock frequency 16MHz
Synch break length 13 bits (Receive is fixed to detect 11

bits)
Data length 8 bits
Data bit format LSB first
Data byte count 8 bytes

The message IDs used in LIN communication in “Table 6-3 LIN message IDs in the sample

program” are described next.

Table 6-3 LIN message IDs in the sample program

Data communication

1D Description o
direction
Temperature measurement command/temperature display
0x00 white — yellow
command
white — yellow
0x01 Temperature sensor information

white <« yellow

Buzzer output command/volume value measurement
0x02 white — yellow
command

white — yellow
0x03 Volume SW (VR) information
white <« yellow

0x04 LED on/off change command- count up/count down white — yellow

white — yellow
0x05 LED value
white «— yellow

134

(e8]
FUJITSU

Details of the IDs are as shown below.

IAN07-00202-3E|

1. ID: 0x00
Temperature measurement
byte 0
command
A/D value (temperature
byte 1
sensor information)
byte 2 Reserved
byte 3 Reserved
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks

Temperature measurement

command

0x55: Start 0xOF: Stop

When SW4 is on the right, 0x55 is sent. This acquires
and displays the temperature information from the bits
pot yellow. When SW4 is on the left, 0xOF is sent. The

temperature information is not displayed.

A/D value (temperature

The temperature sensor information from the starter kit.

0 to 255 The bits pot yellow displays the temperature on the
sensor information)
LED using this A/D value.

2. ID: 0x01

byte 0 Reserved

byte 1 Reserved

A/D value (temperature
byte 2
sensor information)

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

135

(e8]
FUJITSU

IAN07-00202-3E|

Field name Setting value

Remarks

A/D value

(temperature sensor 0 to 255

The response from the bits pot yellow to the ID 0x00
temperature measurement command. The temperature

sensor information is received as an A/D value and is

information)
displayed on the 7SEG display.

3. ID: 0x02

byte 0 Volume value acquire

command

byte 1 | A/D value (VR information)

byte 2 Reserved

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

Volume value acquire
0x55: Start 0xOF: Stop

When SW4 is on the right, 0x55 is sent. Acquires the

bits pot yellow volume SW information and outputs the

command buzzer sound. When SW4 is on the left, 0xOF is sent.
The buzzer sound is not output.
A/D value (VR Starter kit volume SW information. The bits pot yellow
information) 010233 outputs the buzzer sound based on this A/D value.
4. ID: 0x03
byte 0 Reserved
byte 1 Reserved
byte 2 | A/D value (VR information)
byte 3 Reserved
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved

136

(e8]
FUJITSU

IAN07-00202-3E|

Field name Setting value Remarks
The response from the bits pot yellow to the ID 0x02
A/D value (VR volume value acquire command. The volume SW
information) 010233 information is received as an A/D value and output to
the buzzer.
5. 1ID: 0x04
byte 0 | LED on/off change command
byte 1 Reserved
byte 2 Reserved
byte 3 LED value
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
The LED on/off change command from the starter kit.
LED on/off change When SW4 is on the left, 0x55 is sent. In addition, if a
0x55: Start
command LED value other than 0xFF is received, the received
LED value is displayed by the starter kit LEDs.
The value of the LED displayed by the starter kit.
LED value 0 to 7 (Or OxFF)
When OxFF is sent, the data is invalid.
6. ID: 0x05
byte 0 Reserved
byte 1 Reserved
byte 2 Reserved
byte 3 LED value
byte 4 Reserved
byte 5 Reserved
byte 6 Reserved
byte 7 Reserved
Field name Setting value Remarks
The value of the LED displayed by the bits pot yellow.
LED value Oto7

If OXFF is sent, the data is invalid.

137

(e8]
FUJITSU

6.6.2 Sample program sequence

IAN07-00202-3E|

The flowcharts for the LIN communication in the sample program are shown in “Figure 6-9 LIN

communication flowchart (main routine)” and “Figure 6-10 LIN communication flowchart

(interrupt routine: USART receive interrupt)”. First, the microcontroller is initialized, the

LIN-USART is initialized, and the timer is initialized. Next, the bus connection processing is

performed as the LIN master, and the schedule is set. After this, the program enters a loop. Within

the loop, headers are sent and responses are sent and received at fixed intervals. Sending of the

synch break, synch field, and ID field headers and sending and receiving of responses is processed

by the LIN-USART receive interrupt. Processing is performed in response to the master 1D

(identifier).

START

initiali

Microcontroller

zation

LIN-U
initiali

SART
zation

Timer initialization

LIN bus ¢
proce

onnection
ssing

Set schedule

Infinite loop

Figure 6-9 LIN communication flowchart (main routine)

138

FUﬁTSU [AN07-00202-3€

USART receive interrupt
occqrred

Start USART receive interrupt
processing

N
Send ID field

A
Data receive Data send
processing processing
A A
Checksum receive Checksum send
processing processing
Send synch break

and synch field

End UART receive interrupt
processing

Figure 6-10 LIN communication flowchart (interrupt routine: USART receive interrupt)

139

(e8]
FUJITSU

Receive ID field signal

h 4

<Start LIN ID processing>

Does SW4="H"?

W4 is on right side?

Send 0xOF

Clear data

Send 0xOF

Clear data

ID=0x04 ?

No

Send 0x55 and change
LED on/off and 7-
segment display

Y
IDO’M
No

LED on/off and 7-segment
display change information
from LIN slave

P

ID=0x04 ?

No

A

< End LIN ID processing >

IAN07-00202-3E|

Receive 0x55 and measure
temperature sensor

Display temperature
information from LIN slave on
7-segment display

Yes

Receive 0x55 and measure
volume switch

Buzzer output according to
volume SW information from
LIN slave

Send 0xOF and change LED
on/off

Figure 6-11 LIN communication flowchart (data processing by ID)

FUﬁTSU [AN07-00202-3€

The sample program is explained next. However, the sample program contains sections that are
not used during communication with the bits pot yellow. These sections have been made extensible,
and may be included in programs that meet the LIN specifications and programs that operate as the
slave. However, the operation of these sections has not been completely verified. Please take care if
you use these sections.

The points where this sample program operates in the LIN protocol during LIN communication
are shown below. Because the sample program is the LIN master, the LIN bus connection

processing and schedule registration are performed first.

void main(void)

{
(omitted)
1 ifc_connect(hLIN. NORMAL WAKEUP); < LIN bus connection processing
1 sch_set(hSchedulel, Schedulel DATA00); « Set schedule

Figure 6-12 LIN bus initial settings

Parts of the section that sets the LIN ID and sets the schedule is shown below.
In the sample program, one schedule table and eight IDs are used. The IDs that actually use a
response are ID 0x00 to ID 0x05.

typedef enum {
Schedulel DATAO00 = 0,
Schedulel DATAO1,
Schedulel DATAO02,
Schedulel DATAO3,
Schedulel DATA04,
Schedulel DATAOS,
Schedulel DATAO06,
Schedulel DATAO07,

«— Register 8 IDs

(omitted)

#define SchedulelCount 8 « Register 8 IDs
(omitted)

_ farconst 1 u8 Schedulel IdList[SchedulelCount] = < Register 8 IDs

{ ID_00, 1D _01,ID 02, 1D _03,1D_04,ID 05,1D_06,ID 07 };

Figure 6-13 ID registration — Lindbmaster.h

141

FUﬁTSU [AN07-00202-3€

1 u8* __ far const LinTxDataPtr[64] = {
3 01 23 456 78 9 %
/¥ 0%/ ucDATAO00, 0, ucDATA02, 0, ucDATA04, 0, ucDATAO06, 0, 0, 0, — Register send response
/*¥10%/ 0,0,0,0,0,0,0,0,0,0,
(omitted)
1 u8* __ far const LinRxDataPtr[64] = {
i 01 23 456 78 9 %
/* 0%/ 0, ucDATAO1, 0, ucDATAO03, 0, ucDATAO05, 0, ucDATAO07, 0, 0, « Register receive response

Figure 6-14 Send and receive response registration — Lindbmsg.h

This sample program operates by processing multiple interrupts, as shown in “Figure 6-15 Points
where the processing of each interrupt is performed”. We will now look at the processing

performed by the sample program for each field of the LIN protocol.

HEADER RESPONSE

Sync Break Sync Byte ID Field Data Field Checksum Field

ID DT DT Check Sum

|
Sync break interrupt

. [}
Input capture interrupt
[}

| |
Data reception interrupt
! [

! -
| Data reception interrupt
L}

Data reception interrupt

Data reception interrupt

Figure 6-15 Points where the processing of each interrupt is performed

@ Synch break
On synch break, a synch break signal (a low signal for 13 to 16 bits) is sent. In the sample

program, 13 bits are sent. Receive processing is also performed at the same time, and if the

142

FUﬁTSU [AN07-00202-3€

bus is “0” for 11 bit times or more, a synch break interrupt occurs. When a synch break
interrupt is detected, the synch break interrupt is set to disabled, and processing to

determine whether a synch break was received is performed within 1_ifc_rx(data).

Serial clockeycle 12 345 678 910111213 1415 16

bbb T
| R R R R A A O A
Seddata T
Synchbreak:::::::EEEEEEEE::::E
LBR |LIN synch break generate bit LBLO LBL1 LIN synch break length selection bits
0 |No effect 0 0 13 bits long
1 |Generate LIN synch break 1 0 14 bits long
0 1 15 bits long
1 1 16 bits long
Figure 6-16 Synch break data setting
__interrupt void _ LinUartRx(void)
{
if ((ssr & 0xEQ) !=0) { < Brrotr check
(omitted)
} else if 10_UART3_ESCR3 bit LBD == SET) { « Synch break detection
#if (LIN. MASTER==1)
I0_UART3 ESCR3 bit LBD = CLEAR; <« Clear synch break detection flag
(omitted)
telse{
1 ifc rx(data); < Receive processing

Figure 6-17 Synch break interrupt control

143

FUﬁTSU [AN07-00202-3€

144

FUﬁTSU [AN07-00202-3€

The processing for synch break reception, synch field reception, ID reception, DATA
transmission and reception, and WAKEUP transmission are split up according to the status, as
shown in “Figure 6-23 ID receive determination processing”. In the processing to determine
whether a synch break was received, the extended status control register (ESCR) is cleared and the

program enters a state of waiting for reception of the synch field.

void 1 ifc_rx(l ifc_handle rx_data)

{
switch(ucLinStatus) {
case LIN TRANSMIT: « Transmit DATA FIELD
(omitted)
case LIN DATA RECEPTION: «— Receive DATA FIELD
(omitted)
case LIN ID RECEPTION: <« Wait to receive ID FIELD
(omitted)
case LIN_WAIT SYNCH_FIELD: «— Wait to receive Synch field
(omitted)
case LIN_MS_WAIT SYNCH_BREAK: «— Wait to receive Synch break
#if (LINUART CH==3)
I0_UART3 ESCR3 byte = 0x00; « Clear ESCR register
(omitted)
ucLinStatus = LIN. WAIT SYNCH_FIELD; <« Switch to wait to receive
(omitted) Sync field state
case LIN WAKEUP TRANSMIT: « Transmit WAKEUP state
(omitted)
}
}

Figure 6-18 Processing to determine whether synch break was received

145

FUﬁTSU [AN07-00202-3€

@ Synch field
After a synch break is detected, processing is performed to send and receive the synch
field. 0x55 is sent in the synch field. If this data is successfully received by the slave, the

slave becomes synchronized.

0 0
I Synch field P
0

0

\
\
\

0> > >

STARTO 1 2 3 4 5 6 7 STOP

BI'
BIT DATA =0 x55 T\
> 4
; 0
g < 8 Thit >,
0 0
) 2Tbi 0 _ ?2Tbi Thi 2Tbi !
DEELINRA LN L M =y
0 0 :
First time Y Y Fifth time

Figure 6-19 Synch field interrupt control

The processing to receive the synch field, ID field, and Data field is performed within the
LIN-UART interrupt function LinUART. If there are no errors when an interrupt occurs

and the interrupt source is not synch break, received processing is performed.

__interrupt void _ LinUART (void)
{
(omitted)
if ((ssr & 0xEQ) !=0) { « Error check
(omitted)
} else if (I0_UART3_ESCR3 bit LBD == SET) { < Check whether or not interrupt
(omitted) by synch break
telse{

1 ifc_rx(data); < Receive processing

Figure 6-20 Synch field interrupt control

146

FUﬁTSU [AN07-00202-3€

In “Figure 6-23 ID receive determination processing”, once it has been confirmed that the
data is 0x55, the program enters a state of waiting to receive the ID field and performs ID

send processing.

void 1 ifc rx(l ifc handle rx data)
{
(omitted)
case LIN_WAIT_SYNCH_FIELD: «— Wait to receive sync field
if (rx_data == SYNCH_FIELD_CHAR) { =« Check if Sync field is 0x55
(omitted)
ucLinStatus = LIN ID RECEPTION; < Switch to wait to receive ID state
1 ifc_tx(ucLinMsScheduleCurrentld); « Transmit ID processing
(omitted)

Figure 6-21 Synch field receive determination processing

The send data is stored in a register within the send start processing function
| ifc tx(l ifc handle tx data) as shown in “Figure 6-23 ID receive determination

processing”.

void 1 ifc tx(l_ifc_handle tx_data)

{

Hif (LINUART CH ==3)
I0_UART3 RDR3 =tx data; « Set send data in register
(omitted)

Figure 6-22 UART send start processing

147

FUﬁTSU [AN07-00202-3€

@ 1D field

In order to transition to the state of waiting to receive the ID field, the ID receive

determination processing is performed in the normal sequence in the ID receive processing,

as shown in “Figure 6-23 ID receive determination processing”. In the ID receive

determination processing, a judgment is made as to whether the acquired ID is for sending

or for receiving and a parity check is performed. If the ID is for sending, the status is

changed to the send preparation state and the send data is copied to a buffer. If the ID is for

receiving, the status is changed to the DATA receive wait state in preparation for receiving a

response (data) from the slave.

void
case
}

}

1 ifc rx(l ifc handle rx data){

(omitted)
LIN _ID RECEPTION: «— Wait to receive ID FIELD state
ucCurrentld.byte =rx_data; «— Store received ID

if(ucCurrentld.fields.parity != ucRightParity[ucCurrentld.fields.id]) { =« Parity check

1 flg tst(hBIT ERR); « Error processing
1 flg clr(hBIT ERR);
(omitted)
} else if(LinRxDataPtr[ucCurrentld.fields.id] !=0) { <« Ifreceive ID
ucLinStatus = LIN DATA RECEPTION; «— DATA receive wait state
(omitted)
vSetLinFreerunTimersCompare(ucRxCount); « Set free-running timer

} else if (LinTxDataPtr[ucCurrentld.fields.id] !=0) { <« If transmit ID

omitted

() | Copy send data to buffer
vLinWordCopy(ucUartTxBuffer, LinTxDataPtr[ucCurrentld.fields.id], ucTxCount);
vSetLinFreerunTimersCompare(hTINFRAME SPACE IND); <« Set free-running timer

}

(omitted)

Figure 6-23 ID receive determination processing

148

(o8]
FUJITSU

@ DATA field

This section

IAN07-00202-3E|

explains how data is sent and received using the DATA field.

First, for sending DATA, if the ID received using the ID field is the ID for sending, the

vTimeoutCheckTask function as shown in “Figure 6-24 Timeout detection processing” is

called by a free-running timer interrupt. This function is called when the timeout value

configured in the free-running timer is detected, and in this case, the function is called when

the timeout value from receiving the header to sending the response (response space) is

detected.

The vTimeoutCheckTask function is divided into send pre-processing, initialization

processing,

etc. depending on the status information. When the status is the send

pre-processing state, the first byte of the data is sent.

void vTimeoutCheckTask(void){

(omitted)

if (uilntDemandCounter ==0) {

switch (ucLinStatus) {

case

case

case

case

case

case

LIN_PRETRANSMIT: <« Pre-transmit state
ucLinStatus = LIN. TRANSMIT; « State transition: Transmit DATA FIELD state
ucSaveData = ucUartTxBuffer[0]; <« Transmit data: Acquire 1 byte
1 ifc_tx(ucUartTxBuffer[0]); « Data transmit processing
(omitted)

LIN_UART _INITIAL:

(omitted)

LIN ID RECEPTION:

(omitted)

LIN. DATA RECEPTION:

(omitted)

LIN TRANSMIT:

(omitted)

LIN. WAIT SYNCH FIELD START:

(omitted)

Figure 6-24 Timeout detection processing

149

FUﬁTSU [AN07-00202-3€

When the first byte of data is sent, a receive interrupt occurs due to receiving the data that

the program itself sent. Therefore, in the same way as the operation for the ID field, the

receive determination processing function _ifc_rx(l_ifc_handle rx_data) is called, and

processing to send the second and subsequent data is performed based on the send state of

the DATA FIELD as shown in “Figure 6-25 DATA send processing”, with this same process

repeated over and over. Because the data byte count is set to 8 in the current LIN

communication, after the 8th bytes of DATA has been sent the Checksum is finally sent and

the send processing finishes.

void

1 ifc rx(l ifc_handle rx_data){

switch(ucLinStatus){

case

case

case

case

LIN TRANSMIT: <« Transmit DATA FIELD state

if (ucTxCurrentIndex < ucTxCount){ « If transmit DATA remains
(omitted)

1 ifc_tx(ucUartTxBuffer[ucTxCurrentIndex]); «— Transmit processing

(omitted)

} else if (ucTxCurrentIndex == ucTxCount){ « If all transmit data has been sent
(omitted)

1 ifc tx(((unsigned char)~uiTxCheckSum)); <« Transmit checksum processing
(omitted)

}

LIN_DATA RECEPTION:

(omitted)

LIN ID_RECEPTION:

(omitted)

LIN WAKEUP TRANSMIT:

(omitted)

Figure 6-25 DATA send processing

150

FUﬁTSU [AN07-00202-3€

The data receive processing is explained next.

If the ID acquired in the ID receive processing is for receiving, the status is changed to the
DATA receive state and the program waits to receive data from the bits pot yellow. If an
interrupt occurs due to receiving data from the bits pot yellow, the receive processing is
performed within the receive processing function 1_ifc_rx(data) as shown in “Figure 6-26
DATA receive processing”. For the case of receiving data, the receive processing is
performed by 1 ifc_rx(l_ifc_handle rx_data) for each single byte of data received, and once
all 8 bytes of data have been received, the receive success flag is set if there are no

checksum errors and the receive processing finishes.

void 1 ifc rx(l ifc handle rx data){
switch(ucLinStatus){
case LIN TRANSMIT:
(omitted)
case LIN DATA RECEPTION: «— Receive DATA FIELD state
if (ucRxCurrentIndex >=ucRxCount) { « [fall data has been received
if ((wiRxCheckSum + rx_data) == O0xFF) { <« If checksum calculation is correct
(omitted)
flagsLinTxRx.bit.SucceedReception = SET; « Set receive success flag

memcpy(&ucUartRxFixedBuffer[0], &ucUartRxBuffer[0], ucRxCount);
1 Copy received data

(omitted)
} else { « If there is a checksum error
1 flg tstthCHECKSUM ERR); « Error processing
} else { « If there is receive data remaining
ucUartRxBuffer[ucRxCurrentIndex] = rx_data; «— Store receive data in buffer
(omitted)
case LIN ID RECEPTION:
(omitted)
case LIN WAKEUP TRANSMIT:
(omitted)

Figure 6-26 DATA receive processing

151

FUﬁTSU [AN07-00202-3€

Finally, the vBaseTimeTask function in main.c is for processing each received ID. This function is
called periodically at fixed intervals, and primarily checks whether sending and receiving has
finished. If this function is called when all of the data reception has finished
(flagsLinTxRx.bit.SucceedReception is set), the sub_control function in submain.c as shown in
“Figure 6-27 Submain processing 1” and “Figure 6-28 Submain processing 2” is called as receive
completion processing that performs temperature sensor measurement processing, buzzer output

processing, LED on/off processing, 7SEG display processing, and storage of sent data.

152

FUﬁTSU [AN07-00202-3€

void sub_control(void){

if(SW4 == SET){ <« Check the state of SW4 (for right side)
switch (ucCurrentld.fields.id){
case 0x00: < 1D: 0x00
ad_input2(); « Start A/D interrupt (Acquire temperature sensor information)

ucDATAO00[0] = 0x55;
ucDATAO00[1] = temp2; « Transmit temperature sensor information

break;
case 0x01: «— ID: 0x01
LIN temp_value = ucDATAO1[2]; <« Acquire temperature information from slave
led_seg?_display(LIN_temp_value); « Display temperature information on 7SEG
break;
case 0x02: «— ID: 0x02
ad_input0(); « Start A/D interrupt (Acquire volume SW information)

ucDATA02[0] = 0x55;
ucDATA02[1] = Buzzer0; Transmit volume SW information

break;

case 0x03: «— ID: 0x03
LIN Buzzer value =ucDATA03[2]; < Acquire volume SW data from slave

buzzer_control(); « Set PPG timer and output to buzzer

if(LIN_Buzzer value == 0){

I0_PCN1.bit.OE = CLEAR; «— No buzzer output
telse{
I0_PCN1.bit.OE = SET; <« Buzzer output
}
break;
case 0x04: «— ID: 0x04
led_control(); «— Check the state of SW3 and SW5, and display on LED

ucDATA04[0] = 0xOF;
count_clear();
break;
default:
break;

Figure 6-27 Submain processing 1

153

FUﬁTSU [AN07-00202-3E]

Figure 6-28 Submain processing 2

154

(e8]
FUJITSU

7 Appendix

IAN07-00202-3E|

7.1 Sample program folder/file configuration

The folder/file configuration of the sample programs is shown below.

File/folder name

Description

bitspot white SampleProgram

bitspot white SampleProgram.wsp

Softune workspace file

single operation

Folder for single-unit operation

Debug
ABS
single operation.abs Sample program abs file
single operation.mhx Sample program Hex file
LST
OBJ
OPT
Ext int
ADC.c A/D converter initialization file
Ext int.c External interrupt initialization file
initial clock.c Internal clock initialization file
PPG int.c PPG timer initialization file
MB96350 10
_ffmc16.c For header file definitions
_ffmc16.h For header file definitions
_ffmc16_a.asm Assembly language 1/0 definition file
mb96350.h For header file definitions
mb96350 a.inc I/O register definition file (assembly language)
ioreg.txt /O register usage guide (C language file, English version)
ioreg_a.txt I/O register file usage guide (assembly language file,
English version)
ioregj.txt I/O register file usage guide (C language file, Japanese
version)
ioregj a.txt I/O register file usage guide (assembly language file,
Japanese version)
single operation.dat Softune settings file
single operation.prj Softune project file
main.c Main source file

ROM cfg block.c

Settings file for running the monitor debugger

start907s.asm

Microcontroller start assembly file

CAN Folder for CAN operation
Debug

ABS
CAN.abs Sample program abs file
CAN.mhx Sample program Hex file

LST

OBJ

OPT

CAN_LIN Board.sup Debugger file

sim.sup Debugger file

155

(e8]
FUJITSU

IAN07-00202-3E|

ADC

| AD.c

A/D converter initialization file

C_CAN driver

C CAN 1 Driver l.c

CAN initialization (interrupt levels, baud rate, etc.)

C CAN 1 Driver 2.c

CAN initialization (message buffers)

C CAN 1 Intc CAN interrupt processing function
Ext Int
| Ext Int.c External interrupt initialization
Inc
Ext func decla.h External function declaration file
Ext_para_decla.h External variable declaration file
MB96350
_ffmcl6.c For header file definitions
_ffmcl6.h For header file definitions
_ffmc16_a.asm Assembly language I/O definition file
mb96350.h For header file definitions
mb96350 a.inc 1/O register definition file (assembly language)
ioreg.txt 1/O register usage guide (C language file, English version)
ioreg a.txt I/O register file usage guide (assembly language file,
English version)
ioregj.txt I/O register file usage guide (C language file, Japanese
version)
ioregj a.txt I/O register file usage guide (assembly language file,
Japanese version)
MCU init
| Clock config.c MCU clock initialization
Port LED
| Port LED.c Defines the function for driving the port

Reload timer

| Reload _timer.c

Reload timer initialization and interrupt functions

Src
ffmc16.c For header file definitions
main.c Main source file
start907s.asm Microcontroller start assembly file
Vet
Intvect.c Interrupt vector definitions
ROM cfg block.c Settings file for running the monitor debugger
CAN.prj
CAN_LIN Board.dat Softune settings file
LIN Master
Debug
ABS
LIN MASTER .abs Sample program abs file
LIN MASTER.mhx Sample program Hex file
LST
OBJ
OPT
MASTER.sup Debugger file
sim.sup Debugger file
INCLUDE
jpn_eur.h Header definition conversion file
define.h Header definition file
lin.h Header file for the LIN driver
linapi.h Header file for the data communication API code

156

(e8]
FUJITSU

IAN07-00202-3E|

lindbcpu.h Header file for CPU compatibility definitions

lindbmsg.h Header file for LIN communication definitions (baud rate
settings, ID setting, signal registration, etc.)

linhibios.h LIN driver high level header file

linlobios.h LIN driver low level header file

lindbmaster.h Header file for separate LIN communication node
definitions

Vector.h Microcontroller header file

APPL

start907s.asm Microcontroller startup assembly file

ad.c A/D converter file

extint.c External interrupt processing function

main.c Main source file

portled.c Function definition file for driving the ports

ppg.c PPG processing function

ROM cfg block.c

Display file for monitor debugger settings

submain.c Driver low level source file (CPU resource control)
main.h Main source header file
extern.h External reference definition header file
DRIVER
linapi.c Data communication API code header file

linhibios.c

Driver high level source file (LIN protocol control)

linlobios.c

Driver low level source file (CPU resource control)

linmaster.c LIN master communication node definition file
IOREG
_ffimcl6.c For header file definitions
_ffmc16.h For header file definitions
_ffmcl6_a.asm Assembly language 1/O definition file
mb96350.h For header file definitions
mb96350 a.inc 1/0O register definition file (assembly language)
ioreg.txt 1/O register usage guide (C language file, English version)
ioreg_a.txt I/O register file usage guide (assembly language file,
English version)
ioregj.txt I/O register file usage guide (C language file, Japanese
version)
ioregj a.txt I/O register file usage guide (assembly language file,
Japanese version)
LIN MASTER .prj Softune project file
MASTER.dat Softune settings file

Table 7-1 Folder/file structure of the sample programs

157

	Revision History
	Introduction
	Contact
	Suppliers of the parts/materials
	1 Setting up the starter kit
	1.1 Setting up the PC
	1.1.1 Downloading the software
	1.1.2 Installing the USB driver
	1.1.3 Installing the integrated development environment SOFTUNE (bits pot white dedicated version)
	1.1.4 Installing PC Writer (bits pot white dedicated version)
	1.1.5 Installing EUROScope (evaluation version)
	1.1.6 Configuring the board and connecting it to the PC

	2 Running the program
	2.1 Executing in single chip mode
	2.1.1 Building a project
	2.1.2 Writing the program into the microcontroller

	2.2 Debugging by using Monitor Debugger
	2.2.1 Activating and configuring SOFTUNE
	2.2.2 Changing the source file to activate with EUROScope
	2.2.3 Writing the program into the microcontroller
	2.2.4 Activating and configuring EUROScope

	2.3 Exiting EUROScope
	2.4 Exiting SOFTUNE

	3 Operation of the sample program
	3.1 bits pot white single-unit operation
	3.2 CAN communication operation (CAN communication operation
	3.3 LIN communication operation (LIN communication operation with the bits pot yellow)

	4 Try to implement single-unit operation
	4.1 Overview of single-unit operation
	4.1.1 Controlling the SW inputs to light up the LEDs
	4.1.2 Changing the buzzer sound using the volume SW
	4.1.3 7SEG display by temperature sensor operation
	4.1.4 Sample Programs

	5 Try to use CAN communication
	5.1 What is CAN?
	5.2 CAN specifications
	5.2.1 CAN frame configurations
	5.2.2 Arbitration
	5.2.3 Error management

	5.3 Using the microcontroller to perform CAN communication
	5.4 Understanding and running the program for CAN communication
	5.4.1 CAN communication configuration
	5.4.2 Sample program sequence

	6 Try to use LIN communication
	What is LIN?
	6.2 LIN specifications
	6.2.1 Lin frame configuration

	6.3 LIN communication flow
	6.4 Communication between master and slave if an error occurs
	6.5 LIN communication by using the microcontroller
	6.6 　Understanding and running the program for LIN communication
	6.6.1 LIN communication configuration
	6.6.2 Sample program sequence

	7 Appendix
	7.1 Sample program folder/file configuration

