AN07-00200-03E

F²MC-8FX Family 8-BIT MICROCONTROLLER MB95F136JBS

bits pot yellow LIN board

User's Manual

Revision History

Date	Revision			
October.24.2008	Revision 1.0: Initial release			
May 13, 2009	Revision 1.1:TSUZUKI DENSAN's Logo mark was changed.			
April 23,2010	Revision 1.2:			
	Change in company name of FUJITSU MICROELECTORONICS			
	[New] FUJITSU SEMICONDUCTOR LIMITED			
	(left blank)			

AN07-00200-03E

FUJITSU

Note

- The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

- Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

- The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, fire, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

- If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

- The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright© 2010 FUJITSU SEMICONDUCTOR LIMITED all rights reserved

Table of Contents

Revision History	2
Note	3
Introduction	10
Contact	.11
Suppliers of the parts/materials	12
1 Setting up the starter kit	13
1.1 Setting up the PC	21
1.1.1 Downloading the software	22
1.1.2 Installing the integrated development environment SOFTUNE (bits pot yell	low
dedicated version)	22
1.1.3 Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow dedica	ited
version)	27
1.1.4 Connecting it to the PC and installing the USB driver	30
1.1.5 Configuring the starter kit	33
2 Running the Program	35
2.1 Executing in single chip mode	36
2.1.1 Building a project	36
2.1.2 Writing the program into the microcontroller	40
2.2 Debugging by using Monitor Debugger	43
2.2.1 Activating SOFTUNE and configuring the debug settings	43
2.2.2 Writing the monitor program into the microcontroller	53
2.2.3 Loading the target file	56
2.2.4 Running the debugger	57
3 Operation of the sample Programs	60
3.1 bits pot yellow single-unit operation	61
3.2 LIN communication operation (LIN communication operation with the bits pot white)	63
4 Try to operate the bits pot yellow (single-unit)	65
4.1 Overview of single-unit operation	65
4.1.1 Turning ON LEDs using switch operations	65
4.1.2 Controlling the buzzer using the volume switch	69
4.1.3 LED displays using temperature sensor operations	73
4.2 Understanding and running the program in single-unit operation	74
5 Try to use LIN communication	79
5.1 What is LIN?	79

	5.2	LIN specifications	. 82
	5.2.	1 Lin frame configuration	. 82
	5.3	LIN communication flow	. 85
	5.4	Communication between master and slave if an error occurs	. 87
	5.5	LIN communication by using microcontroller	. 88
	5.6	Understanding and overview of the program for LIN communication	. 92
	5.6.	1 LIN communication configuration	. 92
	5.6.	2 Sample programs sequence	. 97
6	App	endix	109
	6.1	Sample program folder/file configuration	109

FUĴĨTSU

List of Figures

Figure 1-1 External view of a starter kit	. 14
Figure 1-2 System connection diagram (single-unit operation)	. 17
Figure 1-3 System connection diagram (when performing LIN communication)	. 18
Figure 1-4 SOFTUNE setup confirmation	. 22
Figure 1-5 Starting SOFTUNE setup	. 22
Figure 1-6 SOFTUNE setup confirmation	. 23
Figure 1-7 SOFTUNE setup/License agreement	. 23
Figure 1-8 SOFTUNE setup/Version information	. 24
Figure 1-9 SOFTUNE setup/Selecting the destination of installation	. 24
Figure 1-10 SOFTUNE setup/Selecting the components	. 25
Figure 1-11 SOFTUNE setup/Confirming the installation settings	. 25
Figure 1-12 SOFTUNE setup/Completion	. 26
Figure 1-13 PC writer/Installation dialog	. 27
Figure 1-14 PC Writer/Setup type	. 28
Figure 1-15 Finished PC writer/Ready to install	. 28
Figure 1-16 Completing the PC Writer installation	. 29
Figure 1-17 Installing BGM Adapter (MB2146-09)	. 30
Figure 1-18 Selecting the search locations	. 31
Figure 1-19 Hardware installation	. 31
Figure 1-20 Completing the BGM Adapter (MB2146-09) installation	. 32
Figure 1-21 MODE selection	. 33
Figure 1-22 Connection between the PC and the starter kit	. 34
Figure 2-1 SOFTUNE Workbench start window	. 36
Figure 2-2 Opening a workspace	. 37
Figure 2-3 Selecting a workspace	. 37
Figure 2-4 Setting the active project	. 38
Figure 2-5 Changing the active project	. 38
Figure 2-6 Building a project	. 39
Figure 2-7 Completing the build	. 39
Figure 2-8 Opening the file to write	. 40
Figure 2-9 Selecting the file to write	. 41
Figure 2-10 Writing the program	. 41
Figure 2-11 Completing the program writing	. 42
Figure 2-12 Opening a workspace	. 43

FUĴĨTSU

Figure 2-13 Selecting a workspace	44
Figure 2-14 Building a project	45
Figure 2-15 Completing the build	45
Figure 2-16 Load module outputs	46
Figure 2-17 Debug settings	47
Figure 2-18 Changing the debug settings	47
Figure 2-19 Starting the debug setting wizard	48
Figure 2-20 Selecting the debugger type	48
Figure 2-21 Entering password when starting debugger	49
Figure 2-22 Selecting the device type	49
Figure 2-23 Setting the primary oscillation frequency	50
Figure 2-24 Specifying a batch file	50
Figure 2-25 Configuring the target file settings	51
Figure 2-26 Setting setup file selection	51
Figure 2-27 Completing the setup wizard	52
Figure 2-28 Completing the project settings	52
Figure 2-29 Opening the file to write	53
Figure 2-30 Selecting the file to write	54
Figure 2-31 Writing the program	55
Figure 2-32 Completing the program writing	55
Figure 2-33 Start debugging	56
Figure 2-34 Setting break points	57
Figure 2-35 Running the program	58
Figure 2-36 Stopping the program	58
Figure 3-1 Single-unit operation/Controls and mechanicals	61
Figure 3-2 LIN communication operation/Controls and mechanicals	63
Figure 4-1 Single-unit operation/Switches and LEDs	65
Figure 4-2 LED lighting circuit	66
Figure 4-3 LED ON/OFF circuit example (schematic diagram)	66
Figure 4-4 Connection configuration between SW2 and microcontroller pins (scher	natic
diagram)	67
Figure 4-5 Single-unit operation/Volume SW	69
Figure 4-6 Volume SW (variable resistor)	69
Figure 4-7 Circuit surrounding the voltage adjustment knob	70
Figure 4-8 Piezoelectricity	71
Figure 4-9 Principle of piezoelectric elements	72

Figure 4-10 peripheral circuit diagram for temperature sensor	. 73
Figure 4-11 Single-unit operation flowcharts	. 74
Figure 4-12 Operation mode settings (when using volume switch)	. 75
Figure 4-13 Operation mode settings (when using the temperature sensor)	. 75
Figure 4-14 Main function program	. 76
Figure 4-15 SW2 interrupts (LED on/off processing)	. 77
Figure 4-16 SW3 interrupts (buzzer output processing)	. 77
Figure 4-17 A/D converter interrupts	. 78
Figure 5-1 Example of vehicle LIN applications	. 80
Figure 5-2 Main LIN network configuration	. 81
Figure 5-3 LIN communication flow	. 83
Figure 5-4 LIN frame configuration	. 83
Figure 5-5 Main LIN network configuration	. 86
Figure 5-6 Example of communication sequence between the master and slaves during nor	mal
communication	. 86
Figure 5-7 LIN circuit	. 88
Figure 5-8 Entire LIN communication control registers	. 89
Figure 5-9 LIN communication flowchart (main routine)	. 97
Figure 5-10 LIN communication flowchart (interrupt routine: UART reception interrupts)	. 98
Figure 5-11 LIN communication flowchart (interrupt routine: input capture interrupts)	. 98
Figure 5-12 Operations points of interrupt processes	. 99
Figure 5-13 Synch break interrupt control	100
Figure 5-14 Input capture operation in the synch field	101
Figure 5-15 Input capture (ICU) interrupt controls	102
Figure 5-16 LIN-UART receive interrupt control	103
Figure 5-17 Receive determination processing	104
Figure 5-18 Timeout detection processing	105
Figure 5-19 Data send processing	106
Figure 5-20 Data reception processing	107
Figure 5-21 Submain processing	108

List of Tables

Table 1-1 Component list	13
Table 1-2 Description of the respective parts of a starter kit	15
Table 1-3 MB95F136JBS pin assignment	19
Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals	62
Table 3-2 LIN communication/Descriptions of the controls and mechanicals	64
Table 5-1 Description of the entire LIN communication control registers and setting values	90
Table 5-2 LIN communication conditions of the sample program	92
Table 5-3 LIN message IDs in the sample program	92
Table 6-1 Sample program folder/file configuration	109

Introduction

Thank you very much for purchasing the bits pot yellow (referred to as this starter kit or the starter kit hereafter).

This starter kit is a beginner's kit intended for those who wish to start learning microcontrollers and on-board network processors. The kit is designed so that the beginners who ask "What is a microcontroller?", "How does it work?" and "How does it control a network?" can easily learn what it is.

The kit includes flash microcontroller development tools, so if you have slight understanding about the C language, you can rewrite a program to let the microcontroller perform in various ways. Even if you do not know of programming, you may be able to enjoy learning a microcontroller with a study-aid book about the C language.

This starter kit can also serve as an introductory training tool for electronic circuit practice or future embedded software development in a class of a college or high school of technology or training for freshman engineers of a manufacturer.

10

Contact

Please ask the following e-mail address for the technical question. Please confirm HP for the latest information and FAQ of bits pot.

Zip code: 105-8420 2-5-3 Nishi-Shinbashi, Minatoku, Tokyo E-mail: pd-bitspot@tsuzuki-densan.co.jp bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

Suppliers of the parts/materials

muRata					
Capacitors	22pF	: GCM1552C1H220JZ02			
	220pF	: GCM1552C1H221JA01			
	0.1µF	: GCM188R11E104KA42			
	10µF	: GCM32ER71E106KA42			
Ceramic Resonator	4MHz	: CSTCR4M00G55B			
	6MHz	: CSTCR6M00G55B			
Buzzer		: PKLCS1212E40A1			

NTC Thermistor	: NTCG164BH103JT1		
Ferrite Beads	: MPZ2012S300AT		

1 Setting up the starter kit

Before using this starter kit, be sure to check the components listed in Table 1-1 are fully supplied. Before connecting this starter kit, you need to install software in your PC. You can download the software required for the starter kit from our web site.

bits pot URL: <u>http://www.tsuzuki-densan.co.jp/bitspot/</u>

No.	Article	Qty.	Specifications	Remarks
1	bits pot yellow LIN board	1	Board mounted with microcontrollers made by Fujitsu Semiconductor; F ² MC-8FX series MB95F136JBS and F ² MC-8LX series MB89P585B	See Figure 1-1
2	USB cable	1	USB (A to miniB)	Accessory
3	LIN cable	1	2-pin cable	Accessory
4	PC	1	On which Windows XP normally runs and USB2.0 ports are supported	Prepare the PC by yourself.

Table 1-1 Component list

AN07-00200-03E

FUJITSU

Figure 1-1 External view of a starter kit

"Table 1-2 Description of the respective parts of a starter kit" provides descriptions of the respective onboard parts.

No.	Name	Specifications	Function	
1	Target device	MB95F136JBS	Main microcontroller (MB95F136JBS).	
2	USB communication microcontroller	MB89P585B	Microcontroller for USB communications to connect the main microcontroller (MB95F136JBS) and the host PC.	
3	Mode SW	Slide switch	Switch for selection of operation mode of the main microcontroller (MB95F136JBS).	
4	Reset SW	Push switch	Switch to reset the starter kit.	
5	Test SW	Push switch x 2	Push switches for testing, connected to the general-purpose I/O port.	
6	Temperature sensor	NTCG164BH103	NTC thermistor made by TDK. Temperature sensor connected to the A/D converter.	
7	LED lamps	LED (red) x 3	LED lamps connected to the general-purpose I/O port.	
8	Volume SW	Volume switch	Volume switch connected to the A/D converter input.	
9	Buzzer	PKLCS1212E40A1	External-drive electric sounder made by Murata Manufacturing. Connected to the PPG timer output port.	
10	Power supply LED lamp	LED (green) x 1	LED lamp for the starter kit power supply.	
11	USB connector	mini-B	USB connector for connection with the PC to write or to debug a program.	
12	LIN connector	2-pin connector	Connector for LIN communication. Connect this connector to the LIN connector on the bits pot white.	
13	Regulator	LP3874EMP-3.3	Regulator IC (3.3V).	
14	LIN transceiver IC	TJA1020T	Transceiver IC used for LIN communication.	
15	Reset IC	M51957BFP	Reset IC.	
16	Oscillator for USB communications microcontroller	CSTCR6M00G55B (6MHz)	Ceralock made by Murata Manufacturing. Oscillator for the USB communication microcontroller.	
17	Target device oscillator	CSTCR4M00G55B	Ceralock made by Murata Manufacturing.	

Table 1-2 Description	of the respective	parts of a	starter kit
	or the respective	parts or a	

		(4MHz)	Oscillator for the main microcontroller.
18	Extension pins	-	Extension pins of the main microcontroller. For details, see the circuit diagram.
19	Jumper pin (JP1)	-	Jumper pin for switching the power supply to the LIN transceiver IC. 1-2 Power supply from USB bus power (5V). 2-3 Power supply from external power source (CN5) (12V) The default is 1-2.
20	Extension power (5V)	-	Extension 5V power terminal.
21	Extension GND	-	Extension GND terminal.
22	Extension power supply (12V) for LIN transceiver IC	-	Extension power supply pin for the LIN transceiver IC. This is used to supply external power (12V). When in use, it is necessary to set the jumper pin (JP1) to 2-3.

The system configuration during LIN communication operations, which are enabled by connecting the separate bits pot white to "Figure 1-3 System connection diagram (when performing LIN communication)", which shows the system configuration during single starter kit operations, is shown in "Figure 1-2 System connection diagram (single-unit operation)".

Note: Prepare the PC by yourself.

Figure 1-2 System connection diagram (single-unit operation)

Connect the PC and starter kit by using the USB cable included in the kit. The starter kit power is supplied by the USB (USB bus power)

[Note]

Connect the USB to the PC directly. Do not connect the USB via a USB hub or an extension unit such as a docking station.

Figure 1-3 System connection diagram (when performing LIN communication)

Connect the PC, the starter kit, and bits pot white using the enclosed USB cables.

The power for the bits pot white is also supplied by the USB in the same way as for the starter kit. (USB bus power)

[Note]

Connect the USB to the PC directly. Do not connect the USB via a USB hub or an extension unit such as a docking station.

"Table 1-3 MB95F136JBS pin assignment" shows the pin assignment for the microcontroller MB95F136JBS.

<mark>Pin No.</mark>	Function	Connected to	Remarks
1	P16	LED6	L output = On
2	PF0	-	
3	PF1	-	
4	MOD	SW1	-
5	X0	Q1	4MHz oscillator
6	X1	Q1	4MHz oscillator
7	VSS	GND_EARTH	
8	VCC	5V	
9	С	С	
10	PG1	-	
11	PG2	-	
12	RST	RESET	
13	AVCC	5V	
14	AVSS	GND_EARTH	
15	P00/INT00/AN00/PPG00	BUZZER	
16	P01/INT01/AN01/PPG01	VR	Power supply voltage division 0 to 100%
17	P02/INT02/AN02/SCK	LIN TRANSCEIVER	
18	P03/INT03/AN03/SOT	LIN TRANSCEIVER	
19	NC	-	
20	P04/INT04/AN04/SIN	LIN TRANSCEIVER	
21	P05/INT05/AN05/TO00	SW2	SW pressed = L
22	P06/INT06/AN06/TO01	SW3	SW pressed = L
23	P07/INT07/AN07	THERMISTOR	
24	P10/UI0	USB-UART conversion (MB89P585B)	Use when writing to flash or during monitor debugging
25	P11/UO0	USB-UART conversion (MB89P585B)	Use when writing to flash or during monitor debugging
26	NC	-	

Table 1-3 MB95F136JBS	pin assignment

27	P12/UCK0/EC0	USB-UART conversion (MB89P585B)	Use when writing to flash or during monitor debugging
28	P13/TRG0/ADTG	PULL-DOWN	
29	P14/PPG0	LED4	L output = On
30	P15	LED5	L output = On

1.1 Setting up the PC

Install the software required to operate this starter kit into the PC.

To set up the PC, use the following procedures.

- ① Downloading the software
- ② Installing the integrated development environment SOFTUNE (bits pot dedicated version)
- (3) Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow dedicated version)
- (4) Connecting it to the PC and installing the USB driver
- (5) Configuring the starter kit settings

1.1.1 Downloading the software

Download and decompress the file from the following website.

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

1.1.2 Installing the integrated development environment SOFTUNE (bits pot yellow dedicated version)

Note

If SOFTUNE V3 of the product version has been installed, first uninstall it, and then install the bits pot yellow dedicated version.

Install the integrated development environment SOFTUNE. Unzip the following file in the folder you decompressed in "1.1.1 Downloading the software".

¥softwares¥SOFTUNE¥ ProPack_Rev300016-BV_8FX.zip

Double-click "Setup.exe" in the decompressed folder. The dialog shown in "Figure 1-4 SOFTUNE setup confirmation" will be displayed. Click the "OK" button.

Figure 1-4 SOFTUNE setup confirmation

The setup wizard shown in "Figure 1-5 Starting SOFTUNE setup" will be displayed. Click "Next".

Figure 1-5 Starting SOFTUNE setup

The dialog shown in "Figure 1-6 SOFTUNE setup confirmation" will be displayed. Click the "Next" button.

F2MC-8L/8FX Family SOFTUNE ProPack	Setup	
CAUTION This is the F2MC-8L/8FX Famly SOFTUNE Pro pot version).	fessional Pack (bits	
If you would like to know more about SOFTUN please contact your nearest Fujitsu Microelectr	IE products or services, onics office.	
InstallShield	< Back Next >	Cancel

Figure 1-6 SOFTUNE setup confirmation

The dialog shown in "Figure 1-7 SOFTUNE setup/License agreement" will be displayed. Read the license agreement thoroughly, and then click the "Yes" button.

F2MC-8L/8FX Family SOFTUNE ProPack Setup	×
License Agreement Please read the following license agreement carefully.	4
Press the PAGE DOWN key to see the rest of the agreement.	
Agreement on Use of Evaluation Software for Supporting FUJITSU Microcontrollers Notes to User This agreement ("Agreement") is made by and between Fujitsu Microelectronics Limited ("FML") and any person ("User") willing to use this evaluation version of SOFTUNE Professional Pack ("Evaluation Software"), a set of support tools for developing application software ("Application") for the microcontrollers manufactured and sold by FML, to prescribe the terms and conditions under which User is entitled to try this free-of-charge Evaluation Software under the laws of Japan.	
Do you accept all the terms of the preceding License Agreement? If you choose No, the setup will close. To install F2MC-8L/8FX Family SOFTUNE ProPack(bits pot version), you accept this agreement.	must
< Back Yes No	

Figure 1-7 SOFTUNE setup/License agreement

The dialog shown in "Figure 1-8 SOFTUNE setup/Version information" will be displayed. Click the "Next" button.

F2MC-8L/8FX Family SOFTUNE ProPack Setup
Version information
The version of the tools installed with this setup is shown below.
[Contents of this Professional Package (REV:300016-BV)] 2008.09.11
This package is included the following softwares.
(1) F2MC-8L/8FX Family SOFTUNE Workbench : V30L31-BV Customize Bar : V01L05 Communication module for EasyCODE : V01L03 Communication module for ZIPC : V01L07
(2) F2MC-8L/8FX Family SOFTUNE C Compiler : V30L12
(3) F2MC-8L/8FX Family SOFTUNE Assembler Pack REV:300013
InstallShield
< Back Next > Cancel

Figure 1-8 SOFTUNE setup/Version information

The dialog to select the installation path will be displayed as shown in "Figure 1-9 SOFTUNE setup/Selecting the destination of installation". select the default folder or desired folder and then click the "Next" button.

F2MC-8L/8FX Family SOFTUNE ProPac	k Setup 🛛 🔀
Choose Destination Location Select folder where Setup will install files.	
Enter destination directory. (e.g. C:\Softune)	
Destination Folder	
C:\Softune	Browse
InstallShield	
	< Back Next > Cancel

Figure 1-9 SOFTUNE setup/Selecting the destination of installation

The dialog to select the components will be displayed as shown in "Figure 1-10 SOFTUNE setup/Selecting the components". Leaving the default settings as they are, click the "Next" button.

F2MC-8L/8FX Family SOFTUNE ProPack Setup	
Select Components Choose the components Setup will install.	
Select the components you want to install, and clear the cr install.	Description Description Integrated Environment Development Platform Integrated Environment Development Platform for the F2MC-8L/8FX Family.
Space Required on C: 82118 K Space Available on C: 102580 K InstallShield <a> <a> <a>K Available on C: Available on C:<td>< Next > Cancel</td>	< Next > Cancel

Figure 1-10 SOFTUNE setup/Selecting the components

The dialog to check the installation settings is displayed as shown in "Figure 1-11 SOFTUNE setup/Confirming the installation settings". Click the "Next" button. The installation begins.

F2MC-8L/8FX Family SOFTUNE ProPack Setup
Install information
Check the current setting before starting to copy files. Click the [BACK] button to make changes. Click the [NEXT] button to start copying files.
Current Settings:
Destination Directory:C:\Softune SOFTUNE Workbench : Install. Customize Bar : No Install. Communication module for EasyCODE : No Install. Communication module for ZIPC : No Install. SOFTUNE C Compiler : Install. SOFTUNE Assembler Pack : Install.
< >>
InstallShield
< Back Next > Cancel

Figure 1-11 SOFTUNE setup/Confirming the installation settings

When the dialog shown in "Figure 1-12 SOFTUNE setup/Completion" appears to tell the completion of installation; Click the "Finish" button.

Figure 1-12 SOFTUNE setup/Completion

1.1.3 Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow dedicated version)

Start Installing the PC writer. Select the following file in the folder you decompressed in "1.1.1 Downloading the software".

¥ softwares¥ USB PROGRAMMER¥ BGM_MB95F136JBS_setup.exe

Double-click "BGM_MB95F136JBS_setup.exe". The dialog shown in "Figure 1-13 PC writer/Installation dialog" will be displayed, and the installation starts. Click the "Next" button.

Figure 1-13 PC writer/Installation dialog

The dialog shown in "Figure 1-14 PC Writer/Setup type" will be displayed. Select "complete", and then click the "Next" button.

🙀 FUJITSU FLA	ISH USB Programmer bits pot MB95F136JBS - InstallShield 🔀
Setup Type Choose the set	tup type that best suits your needs.
Please select a	setup type.
• Complete	All program features will be installed. (Requires the most disk space.)
Custom	Choose which program features you want installed and where they will be installed. Recommended for advanced users.
InstallShield	< Back Next > Cancel

Figure 1-14 PC Writer/Setup type

The dialog shown in "Figure 1-15 Finished PC writer/Ready to install" will be displayed. Click the "Install" button.

记 FUJITSU FLASH USB Programmer bits pot MB95F136JBS - InstallShield 🔀
Ready to Install the Program The wizard is ready to begin installation.
Click Install to begin the installation. If you want to review or change any of your installation settings, click Back. Click Cancel to exit the wizard.
< Back Install Cancel

Figure 1-15 Finished PC writer/Ready to install

After the installation complete, the dialog shown in "Figure 1-16 Completing the PC Writer installation" appears to tell the completion of installation; Click "Finish".

Figure 1-16 Completing the PC Writer installation

This completes the PC writer installation.

1.1.4 Connecting it to the PC and installing the USB driver

Connect the starter kit to the PC, and install the USB drivers.

First, connect the USB port on the PC and the USB port on the starter kit using the enclosed USB cable. Whereupon, the "BGM Adapter (MB2146-09)" installation dialog is displayed as shown in "Figure 1-17 Installing BGM Adapter (MB2146-09)". Select "Install from a list or specific location", and click the "Next" button.

Figure 1-17 Installing BGM Adapter (MB2146-09)

To search for the installation file as shown in "Figure 1-18 Selecting the search locations", check the "Search for the best driver in these locations" and "Include this location in the search". Further, click the "Browse" button, and select the Drivers folder in the SOFTUNE, which has already been installed, and then click the "Next" button.

Found New Hardware Wizard			
Please choose your search and installation options.			
→ ⊙ Search for the best driver in these locations.			
Use the check boxes below to limit or expand the default search, which includes local paths and removable media. The best driver found will be installed.			
> 🔲 Search removable media (floppy, CD-ROM)			
Include this location in the search:			
C:\Softune\Drivers Browse			
O Don't search. I will choose the driver to install.			
Choose this option to select the device driver from a list. Windows does not guarantee that the driver you choose will be the best match for your hardware.			
1			
< Back Next > Cancel			

Figure 1-18 Selecting the search locations

A warning message will be displayed as shown in "Figure 1-19 Hardware installation", ignore and click the "Continue Anyway" button.

Hardwa	Hardware Installation		
1	The software you are installing for this hardware: BGM Adaptor(MB2146-09) has not passed Windows Logo testing to verify its compatibility with Windows XP. (<u>Tell me why this testing is important</u> .) Continuing your installation of this software may impair or destabilize the correct operation of your system either immediately or in the future. Microsoft strongly recommends that you stop this installation now and contact the hardware vendor for software that has passed Windows Logo testing.		
	Continue Anyway STOP Installation		

Figure 1-19 Hardware installation

When the driver installation is complete, the dialog shown in "Figure 1-20 Completing the BGM Adapter (MB2146-09) installation" will be displayed. Click the "Finish" button.

Figure 1-20 Completing the BGM Adapter (MB2146-09) installation

1.1.5 Configuring the starter kit

After the USB driver installation is completed, configure the Mode switches on the starter kit, and then connect it to the PC.

If the starter kit and the PC are connected by USB (i.e., power is being supplied), disconnect the USB temporarily to turn the power OFF. Next, set the starter kit "MODE" selector to "PROG", as shown in "Figure 1-21 MODE selection".

Figure 1-21 MODE selection

MODE Selector	Operation mode
PROG	Flash memory serial write mode:
	\rightarrow Used to write a program into the microcontroller.
RUN	Single chip mode:
	\rightarrow Used to run the program written into it.

Make sure that the MODE selector is set to "PROG".

Then, connect it to the PC.

After setting the MODE selector, connect the USB port on the PC and the USB port on the starter kit using the USB cable included in the kit. Be sure to connect the PC and starter kit directly, without using a USB hub.

Figure 1-22 Connection between the PC and the starter kit

The power of the starter kit is supplied via USB. (USB bus power)

[Note]

When connecting the PC and starter kit, if the driver installation dialog is displayed, it is possible that the USB driver has not been installed correctly. Return to "1.1.4 Connecting it to the PC and installing the USB driver", and reinstall the driver.

2 Running the Program

To run a program with the starter kit, take either of the following procedures.

1	Executing in single chip mode	See P.36
2	Debugging by using Monitor Debugger	See P.43

2.1 Executing in single chip mode

In single chip mode, take the following procedures.

- ① Building a project
- ② Writing the program into the microcontroller

2.1.1 Building a project

Preparation

Decompress the following file in advance within the folder you decompressed in "1.1.1 Downloading the software".

¥ sample program¥ bitspot_yellow_SampleProgram.zip

Activate SOFTUINE (dedicated bits pot version).

In Windows, click the "Start" \rightarrow "All Programs (P)", "Softune V3", \rightarrow "FFMC-8L Family Softune Workbench" to activate SOFTUNE as shown in "Figure 2-1 SOFTUNE Workbench start window".

📸 SOFTUNE Workbench				
File Edit View Project Debug Setup Window Help				

Figure 2-1 SOFTUNE Workbench start window

Click "File" \rightarrow "Open Workspace" from the SOFTUNE menu as shown in "Figure 2-2 Opening a workspace". The workspace opens.

擋 SO	FTU	INE W	orkbei	nch						
File i	Edit	View	Project	Debu	g	Setup	Wir	ndow	Help	
Nev Ope Clo:	w en se			Ctrl+C)		1	i j	y III	
Ope	en We	orkspa	ce							
Clo:	se Wi	orkspa	ce			-				
Sav	/e			Ctrl+S						
Sav Sav	/e As, /e All						6 /	a t	in 117	<u> </u>
Prin	nt						-	- -		*
Rec Rec	:ent T :ent \	'ext Fil Vorksp	e ace File		+ +					
Exit	t									

Figure 2-2 Opening a workspace

As shown in "Figure 2-3 Selecting a workspace", the dialog that allows you to select a workspace is displayed. Select the folder containing the sample program for single chip, select the workspace "bitspot_yellow_SampleProgram.wsp", and then click "Open".

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥bitspot_yellow_SampleProgram.wsp

Open Works	pace	×
Look in: ଢ	bitspot_yellow_SampleProgram_singk 🔽 🗲 🗈 📸 🎫	
LIN_commi	unication :ration :llow_SampleProgram.wsp	
File name:	bitspot_yellow_SampleProgram.wsp Open	
Files of type:	Workspace File(*.wsp)	

Figure 2-3 Selecting a workspace

As workspace opens, set it as the active project. In this sample program, there are two pre-built projects "single_operation.prj" and "LIN_communication.prj". Set the project to be built to "Set as Active Project" as projects are built per project basis. In this section, as single-unit operation is described, check that "single_operation" is set to the active project, as shown in "Figure 2-4 Setting the active project".

📸 SOFTUNE Workbench - bitspot	
File Edit View Project Debug Setu	ıр
日子子子 日子子子	y
single operation 💌 Debug	
	é
A A	
Workspace'bitspot_yellow_5 Source Files The files Dependencies Dependencies Debug LIN_communication.abs	

Figure 2-4 Setting the active project

To set the project for LIN communication as the active project, select the project for LIN communication and right-click on it, as shown in "Figure 2-5 Changing the active project". The sub-menu is displayed, so select "Set Active Project". The project name will be displayed in bold, and the build for that project will be enabled.

SOFTUNE Workbench - bitspot_yellow_Sample	📸 SOFTUNE Workbench - bitspot_yel
File Edit View Project Debug Setup Window Help 티라마아이 만 환호(이번 프로)트	File Edit View Project Debug Setup W
single operation V Debug	
DER IBR DC & M M	
	LIN_SLAVE Debug
Workspacebitspot_yelow_5 Single_operation.abs Single_operation.abs Single_operation.abs Single_operation.abs Single_operation.abs Single_operation.abs Single_operation.abs	
Bebug Set active project Create new folder Add Member to project Set Project Set Unkage order Make Buid Executing Inher or Ibrarian Delete Project Property H N N Open List File Open List File	Workspace bitspot_yellow_S Workspace bitspot_yellow_S Surce Files Dependencies Debug LIN_communication.

Figure 2-5 Changing the active project

Click "Project" \rightarrow "Build" from the menu as shown in "Figure 2-6 Building a project", to build the project.

Figure 2-6 Building a project

The message pane at the bottom of the windows shows the message as shown in "Figure 2-7 Completing the build" to notify you that the build has been completed successfully.

Now starting load (D:\Documents and	nodule converter Settings\uenishi\Desktop\bits pot yellow_files\sample program\bitspot_yell
No Error.	
<	

Figure 2-7 Completing the build

2.1.2 Writing the program into the microcontroller

Preparation

To write the program, it is necessary to set the Mode SW on the starter kit to "PROG" in advance. Turn OFF the starter kit, switch the mode setting to "PROG", and then turn ON the power supply to the starter kit again.

From the Windows start menu, click "All Programs" \rightarrow "FUJITSU USB PROGRAMMER" \rightarrow "MB95F136JBS" to activate the PC writer.

To select the file to be written as shown in "Figure 2-8 Opening the file to write", click the "Open" button.

USB Programmer				
<u>T</u> arget Microcontroller Cr <u>v</u> stal Frequency Hex File	MB95F136JBS 4MHz	▼ Click <u>Opén</u>	Start Address nd Address Flash Memory Size	008000H 00FFFFH 008000H
- Command	<u>F</u> ull Oper	ration (D+E+B+P)		<u>H</u> elp
Download	Erase	<u>B</u> lank Check	USB-Progr	ammer o
Program & Verify	<u>R</u> ead & Compare	<u>C</u> opy	MB95F136JBS	UJITSU

Figure 2-8 Opening the file to write

The dialog to select the file to which to write will be displayed as shown in "Figure 2-9 Selecting the file to write", select the file built in "2.1.1 Building a project", and click "Open".

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥single_operation
¥Debug¥ABS¥ single_operation.mhx

If you built a LIN communication project in "Figure 2-6 Building a project", select the following file, and click "Open".

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥LIN_communicationn¥Debug¥ABS¥LIN_communication.mhx

Open		? 🔀
Look in: 隘	ABS	- 🔁 🖆 📰 -
single_ope	ration.mhx	
File name:	single_operation.mhx	Open
Files of type:	S format files (*.mhx;*.cnv;*.ahx)	Cancel

Figure 2-9 Selecting the file to write

Click the "Full Operation" button as shown in "Figure 2-10 Writing the program" to start writing the program. The program writing begins.

1998 USB Programmer									
<u>T</u> arget Microcontroller Cr <u>y</u> stal Frequency	MB95F136JBS 4MHz	Start Address 008000H End Address 00FFFFH							
Hex File	single_operation.mhx (Open)	Flash Memory Size 008000H							
Command Click <u>Full Operation (D+E+B+P)</u>									
Download	Erase Blank Check	USB-Programmer							
<u>P</u> rogram & Verify	Read & Compare Copy	bits pot MB95F136 JBS FUJITSU							

Figure 2-10 Writing the program

The dialog shown in "Figure 2-11 Completing the program writing" is displayed to notify you that the program writing has been completed. Click the "OK" button to quit the PC writer.

Figure 2-11 Completing the program writing

Switch the MODE SW on the starter kit to "RUN", and then press the Reset button; the program starts running.

2.2 Debugging by using Monitor Debugger

To debug by using Monitor Debugger, take the following procedures.

- ① Activating SOFTUNE and configuring the debug settings
- (2) Writing the program into the microcontroller (including monitor programs)
- ③ Loading the target file
- (4) Running the debugger

2.2.1 Activating SOFTUNE and configuring the debug settings

Preparation

Decompress the following file in the folder you decompressed in "1.1.1 Downloading the software" in advance.

¥ sample program¥ bitspot_yellow_SampleProgram.zip

From Windows start menu, click "All Programs (P)" \rightarrow "Softune V3" \rightarrow "FFMC-8L Family Softune Workbench" to activate SOFTUNE.

Click "File" \rightarrow "Open workspace" from the SOFTUNE menu as shown in "Figure 2-12 Opening a workspace" to open a workspace.

Figure 2-12 Opening a workspace

As shown in "Figure 2-13 Selecting a workspace", the dialog that allows you to select a workspace is displayed. Select the folder containing the sample program for the monitor debugger, and then select the "bitspot_yellow_SampleProgram_monitordebugger.wsp" workspace, and click "Open". ¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_monitor-debugger¥ bitspot_yello w_SampleProgram_monitordebugger.wsp

Open Workspace
Look in: Ditspot_vellow_SampleProgram_monit - 🗭 🗈 📸 📰 -
File name: bitspot_yellow_SampleProgram_monitordebugg Open Files of type: Workspace File(".wsp) Cancel

Figure 2-13 Selecting a workspace

The workspace opens, check that the "single_operation" project is set to the active project. To change the active project to the project for the LIN communication, select the project for the LIN communication as shown in "Figure 2-5 Changing the active project", and then right-click and select "Set as Active project" from the sub-menu.

After setting the active project, click "Project" \rightarrow "Build" from the menu as shown in "Figure 2-14 Building a project", to build it.

FUJITSU

Figure 2-14 Building a project

The message pane at the bottom of the screen displays the message as shown in "Figure 2-15 Completing the build" to notify you that the build has been completed successfully.

D:\Documents and Settings\uenishi\Desktop\bits pot yellow_files\sample program\bitspot_yellow_SampleProgram\bitspot_yellow_SampleProgram_monit
Now starting load module converter
D:\Documents and Settings\uenishi\Desktop\bits pot yellow_files\sample program\bitspot_yellow_SampleProgram\bitspot_yellow_SampleProgram_monit
No Error.

Figure 2-15 Completing the build

Next, configure the load module output settings.

As shown in "Figure 2-16 Load module outputs", select "Project" \rightarrow "Setup Project" from the menu. The project settings dialog opens, check that "Start load module converter" is enabled on "Converter". By enabling this checkbox, the load module will be output.

	별 S	OFT	UNE V	/orkb	enc	:h - bit	spot_y	yellow_	Samp	leP i	
	File	Edit	View	Proje	ct	Debug	Setup	Window	/ Help		
	EL	7h	The last	Ac	tive	Project			•	1	
				Ac	id Pr	roject			•		
		-		AC	Add Member						
	۲	**	±±	Se	tup	Workspa	асе				
		_		Se	tup: tup:	Project.					
single operation					Customize Build Project Dependencies						
	D	2		Co	onfig	uration			•	1	
		3		In	clud	e Depen	dencies				
				Co	mpi	e					
		∎µv ⊨…∎	vorkspa Bi sinni	Ma	ake			Shift+	-F8		
			÷	Bu	ild			Ctrl+I	-8		
		Ē	+ <u>)</u> I	Sb	ор						
			÷) eX	terr	al I/F Di	.L		•		
tup Proj	ect										
rget of set	ting:			C	Comp	iler Asse	mbler Lir	nker Libra	arian Co	nverter 🝺	
ebug			-] @	АР	solute moo	lule conve	erter is starte	ed		
🕒 sing	le oper et ave	ation.p	orj		Outp	out Data F	ormat: M	otorola S fo	ormat (f2m	s)	
	JLAVE	pij				Dutputs st	art messag	ge 🔽 Co	introl of de	efault optior	
					L I	Adjust aut file fore		L St	art addres	s record ou	
					r Duq r A¢	ljust forma	teren de la composición de la composicinde la composición de la composición de la composición de la co	None		<u> </u>	
						utput range	e: Auto				
					Pa	adding dat	a: H'FF			Chang	
					ther (Option:					
					ption						
					<dof< td=""><td></td><td></td><td></td><td></td><td></td></dof<>						
				-(owno b ''D:'	Documer	its and Sel	ttings\uenis	shi\Deskti	op\bits pot	
				у	ellow	_files\sam	ple				
							UK	_	Cancel	Δor	
							UN ON		Sancor	34	

Figure 2-16 Load module outputs

AN07-00200-03E

FUJITSU

Next, configure the debug settings. On the same project settings dialog, open the "Debug" tab. The debug settings dialog opens as shown in "Figure 2-17 Debug settings".

Setup Project		X
Target of setting:	Assembler Linker Librarian Convert Debug	• •
Debug	Category: General	
<u> </u>		alu

Figure 2-17 Debug settings

Change the category from "General" to "Setup", and select "mon_dbg" from the setup name list. In the setup name, "mon_dbg" is entered as shown in "Figure 2-18 Changing the debug settings". Here, click the "Change" button to change the settings. (The setup wizard activates.)

Setup Project		
Setup Project Target of setting: Debug Single operation.prj LIN SLAVE.prj	Assembler Linker Librarian Conver Category: Setup Available Setup Name: mon_dbg Setup Name List: emu_dbg mon_dbg	Add Change Setup Name Change Delete
		Cancel Apply

Figure 2-18 Changing the debug settings

 Setup Wizard
 You can easily set for debugger, when use the 'Setup Wizard'.

 Push 'Next' to start making settings.

 < Back</td>
 Next > Finish
 Cancel

The debug setup wizard is displayed as shown in "Figure 2-19 Starting the debug setting wizard" Click the "Next" button.

Figure 2-19 Starting the debug setting wizard

Select the debugger type as shown in "Figure 2-20 Selecting the debugger type"; select "Monitor Debugger" and then click the "Next" button.

Figure 2-20 Selecting the debugger type

FUJITSU

Setup Wizard	Please enter the password for the start of the debugger. Password Passworc
< Back	Next > Finish Cancel

Enter the password as shown in "Figure 2-21 Entering password when starting debugger". Keep the default settings and then click the "Next" button.

Figure 2-21 Entering password when starting debugger

Select the device type as shown in "Figure 2-22 Selecting the device type". Check that "USB" has been selected in the device name, and click the "Next" button.

Setup Wizard	X
	Please select device type. Type Device Name: USB Type USB Type Device Name:
< Back	Next > Finish Cancel

Figure 2-22 Selecting the device type

FUjitsu

Set the frequency as shown in "Figure 2-23 Setting the primary oscillation frequency". Set to "D'4" (4MHz frequency setting), and click the "Next" button.

Figure 2-23 Setting the primary oscillation frequency

Specify nothing to the batch file field as shown in "Figure 2-24 Specifying a batch file"; keep the field left blank and click the "Next" button.

Figure 2-24 Specifying a batch file

FUJITSU

Setup Wizard	
	Make settings for the target file. Auto load when starting debug. Specification batch file before/after load. Before: Browse After: Browse
< Back	Next > Finish Cancel

Enable the "Auto load when starting debug" checkbox as shown in "Figure 2-25 Configuring the target file settings", and click the "Next" button.

Figure 2-25 Configuring the target file settings

Select "Specification" for setup file selection as shown in "Figure 2-26 Setting setup file selection", and click the "Next" button.

Figure 2-26 Setting setup file selection

AN07-00200-03E

FUJITSU

When all the settings have been completed as shown in "Figure 2-27 Completing the setup wizard", click the "Finish" button.

Setup Wizard	
	Settings will be completed when you click 'finish.'
< Back	Next> Finish Cancel

Figure 2-27 Completing the setup wizard

When the debug settings have been completed, click the "Apply" button and then click the "OK" button as shown in "Figure 2-28 Completing the project settings" to finish configuring the project settings.

Setup Project		×
Setup Project	Assembler Linker Librarian Convert Category: Setup Available Setup Name: mon_dbg Image: Convert Setup Name: mon_dbg Image: Convert Setup Name: Convert mon_dbg Image: Convert Mon_dbg Image: Convert Image: Convert Image: Convert Imag	ter Debug ▲ ▲ ▲ ▲ ▲ Add Browse Change Setup Name ▲ Change Delete
		Cancel Apply

Figure 2-28 Completing the project settings

2.2.2 Writing the monitor program into the microcontroller

Preparation

To write programs, it is necessary to set the MODE SW on the starter kit to "PROG" in advance. Turn OFF the starter kit, switch the mode setting to "PROG", and then turn ON the power supply to the starter kit again.

To activate the PC writer and select the file to be written as shown in "Figure 2-29 Opening the file to write", click the "Open" button.

USB Programmer				
<u>T</u> arget Microcontroller Cr <u>v</u> stal Frequency Hex File	MB95F136JBS 4MHz	Cli Cli	ck t Address End Address Flash Memory Size	008000H 00FFFFH 008000H
Command	<u>E</u> ull Oper	ration (D+E+B+P)		<u>H</u> e lp
Download <u>P</u> rogram & Verify	<u>E</u> rase <u>R</u> ead & Compare	<u>B</u> lank Check <u>C</u> opy	USB-Progr	ammer FUIITSU

Figure 2-29 Opening the file to write

The dialog to select the file to which to be written is displayed as shown in "Figure 2-30 Selecting the file to write", so select the file built in "2.2.1 Activating SOFTUNE and configuring the debug settings", and click the "Open" button.

If you built a LIN communication project in "2.2.1 Activating SOFTUNE and configuring the debug settings", select the following file, and click the "Open" button.

¥bitspot_yellow_SampleProgram_monitor-debugger¥LIN_communication¥Debug¥ABS¥LIN_communication.mhx

Open					? 🗙
Look jn: 隘	ABS	-	🕁 🔁	Ċ	Ⅲ •
single_oper	ration.mhx				
File <u>n</u> ame:	single_operation.mhx				<u>O</u> pen
Files of <u>type</u> :	S format files (*.mhx;*.cnv;*.ahx)		-		Cancel

Figure 2-30 Selecting the file to write

USB Programmer		
<u>T</u> arget Microcontroller Cr <u>v</u> stal Frequency Hav File	MB95F136JBS	Start Address 008000H End Address 00FFFFH
Command	Eull Operation (D+E+B+P)	
Download <u>P</u> rogram & Verify	Erase Blank Check	bits pot MB95F136JBS

Click the "Full Operation" button as shown in "Figure 2-31 Writing the program" to start writing. The program writing begins.

Figure 2-31 Writing the program

The dialog shown in "Figure 2-32 Completing the program writing" is displayed to notify you of the completion of the program writing; press the "OK" button to quit PC Writer..

Figure 2-32 Completing the program writing

After completing the program writing, turn OFF the starter kit power supply, and set the Mode SW to "RUN" before reconnecting the power supply to the starter kit.

2.2.3 Loading the target file

Click "Debug" \rightarrow "Start debug" from the menu as shown in "Figure 2-33 Start debugging". When the debug starts, the target file will be loaded automatically.

Figure 2-33 Start debugging

Once the monitor program itself is loaded to flash memory, the module can be loaded by the monitor debugger functions subsequently, and, it is not necessary to use the PC writer.

Note: It may take several minutes for the monitor debugger to load.

2.2.4 Running the debugger

As shown in "Figure 2-34 Setting break points", you can set break points to where green round mark is located which is shown on the left side of lines in the source file. A maximum of only two break points can be set.

Note that you cannot set break points while the program is running.

Figure 2-34 Setting break points

AN07-00200-03E

FUJITSU

Click "Debug" \rightarrow "Run" \rightarrow "Go" from the menu, as shown in "Figure 2-35 Running the program". By this operation, the program runs and the starter kit operates.

Figure 2-35 Running the program

To stop the program, click "Debug" \rightarrow "Abort" from the menu as shown in "Figure 2-36 Stopping the program".

🖆 SOFTUNE Workbench	- bitspot_yellow_SampleProgram_monitordebugger:De
🧾 File Edit View Project	Debug Setup Window Help
目的份份也	Run
	Reset of MCU
	Breakpoints Breakpoint Set/Reset F9
single operation 📃 🔽 Debug	Event
	Sequence
<u>a</u> a	Time Measurement
□ □ □ Workspace bitspot_yell	Clear Call : None
⊡ single_operation ⊡ Source Files ⊡ Include Files	Vector Load target file
⊕ @@ Dependencies ⊕ @@ Debug	End debug adInitialize(void)
	abs 132: {
	134: if (TEMP_MEASURE_ON) {

Figure 2-36 Stopping the program

2.2.4.1 If the monitor debugger cannot be controlled

It may become unable to control the monitor debugger (I.e., communications between the host system and the target fails.), due to, such as the application program unexpected behavior. In such cases, restart the debugger using the following procedure.

- ① Select "Debug (D)", "Abort".(Alternatively, click the Run Stop button.)
- ② Click the "Abort(A)" button in the abort dialog. Note: MCU cannot be reset at this time. This dialog may be displayed several times, but ignore it.
- ③ If the warning "Cannot abort" is displayed, click "OK"
- (4) Close the debugger and reset the target system.
- (5) Restart the debugger.
- 2.2.4.2 Debugger prohibitions
 - ① Do not operate resources that use the monitor debugger (IO ports P10, P11, P12).
 - 2 Do not operate the PLLC and SYCC registers by using the debugger.
 - ③ Do not set break points in the monitor program.
 - ④ Do not single step thorough within API FGM_WDTON process.
- 2.2.4.3 Debugger limits
 - ① The initial values for the SP register changes.
 - (2) The startup time changes after the reset cancellation.
 - ③ Forced breaks are disabled when UART/SIO interrupts are prohibited.
 - (4) The response time of clock 2 system products (with sub-clock inputs) is lengthened.
 - (5) Code breaks are disabled during step-in operations.
 - (6) Add four bytes to the stack area for the monitor program.
 - \overline{O} Make sure to combine use with the "flash security function" also.
 - (8) Use the flash programmer when changing the password.
 - (9) A reset occurs after an object has been loaded.

3 Operation of the sample Programs

This section describes the operation of the sample program. The operation of the sample programs is classified into the following two categories.

- 1 bits pot yellow single-unit operation
- ② LIN communication operation (LIN communication operation with the bits pot white)

3.1 bits pot yellow single-unit operation

Explanations of the operation and control parts as shown in "Figure 3-1 Single-unit

operation/Controls and mechanicals" are described in "Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals".

The LEDs (red) and buzzer are controlled by SW 2, SW 3, volume switch, and temperature sensor on the starter kit.

Figure 3-1 Single-unit operation/Controls and mechanicals

AN07-00200-03E

FUJITSU

No.	Name	Specifications	Function
			Switches between PROG mode and RUN mode.
1	Mode SW	Control	PROG: Write a program
			RUN: Run the program
2	Reset SW	Control	Resets the MCU when pressed.
			Turns ON and OFF the LED when pressed. Light up
3	SW2	Control	LEDs 4 to 6 in order and turn OFF when they are all
			ON, each time the switch is pressed.
4	SW2	Control	Turns ON and OFF the buzzer outputs each time the
4	5 10 5		switch is pressed.
			Displays the temperature sensor information on the
5	Temperature sensor	Control	LED.
			The ON/OFF pattern depends on the temperature.
6	Volume SW	Control	Change the buzzer sound when the sound is ON.
0	volume S w	Control	Slide to the left to raise the tone.
7		Mashariaal	Press SW 3 to sound the buzzer. Further, operate the
/	Buzzei	Mechanical	volume switch to change the tone.
Q			This LED is turned ON either by pressing SW2 or by
0	8 LEDS (red) Mechanical	witchianicai	the temperature sensor operations.

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals

3.2 LIN communication operation (LIN communication operation with the bits pot white)

Explanations of the operation and control parts as shown in "Table 3-2 LIN communication/Descriptions of the controls and mechanicals" are described in "Figure 3-2 LIN communication operation/Controls and mechanicals".

Perform LIN communication with bits pot white. The starter kit sends responses to the bits pot white as a LIN slave. LED (red) and 7SEG ON signals, and buzzer outputs of the starter kit and the bits pot white are controlled, by switch operation, and temperature sensor and volume switch operation of each starter kit. Further, if an error occurs during LIN communication, a buzzer output is sent.

Figure 3-2 LIN communication operation/Controls and mechanicals

AN07-00200-03E

No.	Name	Function	Description
	Mode SW	Control	Switches between PROG mode and RUN mode.
1			PROG: Write a program
			RUN: Run the program
2	Reset SW	Control	Resets the MCU when pressed.
			If SW 2 is pressed when the bits pot white SW4 is set to the
			left, the value on the LED currently displayed in the starter
3	SW2	Control	kit is incremented, and the bits pot white LED and 7SEG
3	5 W 2	Control	LED are also incremented.
			If bits pot white SW4 is set to the right, no operation is
			performed.
			If SW2 is pressed when the bits pot white SW4 is set to the
			left, the value on the LED currently displayed in the starter
4	SW3	Control	kit is decremented, and the bits pot white LED and 7SEG
			LED are also decremented. If bits pot white SW4 is set to
			the right, no operation is performed.
5	Temperature sensor	Control	When bits pot white SW4 is set to the right, the temperature
5			of the starter kit temperature sensor is sent.
	Volume SW	Control	When bits pot white SW4 is set to the right, the information
6			of the starter kit Volume SW is sent.
0			The sound of the bits pot white buzzer output changes when
			the volume switch is operated.
	Buzzer	Mechanical	Buzzer sounds are output when bits pot white SW4 is set to
			the right. Further, the buzzer sound output changes
7			according to volume switch operations.
			In addition, if an error occurs during LIN communication, a
			buzzer sound is output.
		Mechanical	When bits pot white SW4 is set to the left, the count is
			incremented or decremented by pressing starter kit SW2 and
8	LED (red)		SW3, and bits pot white SW3 and SW5. When bits pot white
			SW4 is set to the right, the temperature information from the
			bits pot white temperature sensor is displayed.

Table 3-2 LIN communication/Descriptions of the controls and mechanicals

4 Try to operate the bits pot yellow (single-unit)

4.1 Overview of single-unit operation

After system startup, the starter kit LEDs and buzzers are operated by the switches (SW2, SW3, and volume switch) and temperature sensor as described below.

4.1.1 Turning ON LEDs using switch operations

General push switches and LEDs are mounted to the starter kit as shown in "Figure 4-1 Single-unit operation/Switches and LEDs", and connected to the microcontroller respectively. This section explains how to turn ON and OFF the LEDs using SW2 operations.

Figure 4-1 Single-unit operation/Switches and LEDs

First, describes how to control turning ON the LEDs using the microcontroller.

The LEDs and microcontroller of the bits pot yellow are connected as shown in "Figure 4-2 LED lighting circuit". This is shown diagrammatically in "Figure 4-3 LED ON/OFF circuit example (schematic diagram)". When the LED is OFF as shown in Figure 4-3(a), pin P14 outputs are high, so current does not flow to the LED, and the LED remains OFF. When the LED is ON as shown in Figure 4-3(b), pin P14 outputs are low, so current flows to the LED, and the LED turns ON. The switches of the microcontroller can be switched using the program that controls the microcontroller.

Figure 4-2 LED lighting circuit

Figure 4-3 LED ON/OFF circuit example (schematic diagram)

The pin P14 is controlled by the PDR1 register and the DDR register. If using the ports as outputs, write the value to be output to the bit corresponding to the pins in the PDR1 register (0: Low, 1: High), and write "1" to the bits corresponding to the pins in the DDR1 register.

Next, regarding switch controls, the switches on the starter kit are connected to the pin P5, which is the external interrupt input pin, and the general I/O ports on the microcontroller. This section explains how to detect switch operations (i.e., when the switch is pushed) on the microcontroller using the pins as external interrupt input pins (INT5).

An overview of the SW2 connection circuit in the starter kit is shown in "Figure 4-4 Connection configuration between SW2 and microcontroller pins (schematic diagram)". In the starter kit, SW2 is connected to the INT5 pin, which is the external interrupt input pin on the microcontroller. If SW2 is not pressed (i.e., is OFF), the voltage applied to the INT5 pin on the microcontroller is VCC (5V), which is High. Further, if SW 2 is pressed (i.e., is ON), the voltage applied to the INT5 pin is grounded, so the INT5 (P5) pin input status is Low. Consequently, when SW2 is pushed, the

FUJITSU

input to the INT5 pin changes from High to Low. Further, when SW2 is released, the input to the INT5 pin changes from Low to High. If using the external interrupt function on the microcontroller, an interrupt can be created using timing that changes the pin status. In other words, if using this mechanism, the fact that the switch has been operated can be identified using the interrupt. Further, SW3 can also be operated in the same way as SW2, but SW3 is connected to the INT6 pin on the microcontroller. Consequently, when SW3 is operated, an INT6 pin external interrupt is created.

Figure 4-4 Connection configuration between SW2 and microcontroller pins (schematic diagram)

The next section explains the methods and procedures for using the INT5 pin on the microcontroller as an external interrupt pin. If using the INT5 pin as an external interrupt, set the I/O direction to "input" using register DDR0 on port 0 and, further, if using combined analog input pins, it is necessary to make port input settings. Register DDR0 on port 0 is an 8-bit register for switching the direction (input or output direction) used by the port 0 pins. If using the pins as input ports, write "0" to the bit corresponding to DDR0.

Further, to use the external interrupt function on the microcontroller, it is necessary to set the external interrupt register EIC00. EIC00 is a register that selects the edge polarity and controls interrupts for the external interrupt inputs.

This section considers when SW 2 being turned ON is detected by an interrupt. When SW2 is released, the fact that the input level of the INT5 pin changes from Low to High has already been explained. With the external interrupt function, it is possible to detect the change in the level from Low to High (i.e., the rising edge) of the INT5 pin by setting the external interrupt register using the steps (1) to (5) in the procedure described below. Consequently, using this method, it is possible to detect when SW2 is turned ON using an interrupt.

- (1) Write "1" to AIDRL bit 5, and make the settings so that the P5 pin on port 0 is used as the input port.
- (2) Write "0" to DDR0 bit 5, and set SW2 to inputs.
- (3) Set EIC20 bit 4 to "0". (This prohibits INT5 interrupts.)
- (4) Set EIC20 bit 5 to "1", and bit 6 to "0". (Set so that an external interrupt is created when

the rising edge is detected.)

(5) Set EIC20 bit 5 to "1". (This permits INT5 interrupts.)

4.1.2 Controlling the buzzer using the volume switch

This section introduces processing to change the buzzer sound according to changes in the digital signal converted from the analog signals input into the microcontroller. By Volume SW operations, the analog signals input into the microcontroller is converted to digital using an A/D converter and acquire them as digital signals internally. Further, the A/D converter is a function that separates and converts analog values to digital values using standards based on certain rules. In addition, this function is built into the microcontroller, and the conversion process is called "A/D conversion".

In the starter kit, the voltage values applied to the analog pins for A/D conversion can be controlled using the volume switch, which is built into the starter kit. Analog signals are input to the microcontroller using this knob. Analog signals that have been entered are processed by the microcontroller after being converted to digital signals by the A/D converter.

Figure 4-5 Single-unit operation/Volume SW

An A/D converter with 8-bit resolution (10-bit resolution can also be used) is built into the main microcontroller in the starter kit.8-bit resolution is the name given to the ability to deblock and convert analog values to digital values in 2^8 (i.e., 256) steps.1-bit voltage accuracy (at 5V) during 8-bit resolution is described below.

1-bit voltage accuracy (at 5V)

With 8-bit resolution 5V/256 = Approx. 0.01953V

This explanation concerns the volume switch mechanism, but the symbol for a variable resistor is used in "Figure 4-6 Volume SW (variable resistor)". In truth, the volume switch is really a variable resistor.

Figure 4-6 Volume SW (variable resistor)

Figure 4-7 Circuit surrounding the voltage adjustment knob

In the starter kit, the circuit is configured as shown in "Figure 4-7 Circuit surrounding the voltage adjustment knob", and adjusting this volume switch changes the value of the voltage applied, and applies this voltage to the pins that perform the A/D conversion. The applied voltage can be digitally converted in 256 steps, and handled as internal signals. In this sample program, the size of the applied voltage is obtained using an A/D converter, and the buzzer sound changes according to this value.

Next, here explains how to output buzzer sounds.

An element called a piezoelectric element is used in the buzzer. Piezoelectric elements are elements that use the piezoelectric effect, and which use materials that create a voltage when shock or pressure are applied (piezoelectricity) or, conversely, which use materials with properties that create a distortion in the crystal configuration when a voltage is applied (reverse piezoelectricity). As shown in "Figure 4-8 Piezoelectricity", piezoelectric elements have the property of expanding when a voltage is applied in the direction of polarization (the direction of the green arrows) and contracting when a voltage is applied in the opposite direction to polarization (the opposite direction from the green arrows).

Figure 4-8 Piezoelectricity

Consequently, as shown in "Figure 4-9 Principle of piezoelectric elements", when an AC voltage is applied, the crystals repeatedly expand and contract each time the direction of the voltage alternates. By changing the frequency of the AC voltage, the speed of the crystal contraction and expansion also changes. If this property is used skillfully, the crystal can be vibrated at various frequencies. If the vibration energy of the crystal is sufficiently great, it can also vibrate the air to create sound. This is the principle used in the piezoelectric buzzer.

FUJITSU

Figure 4-9 Principle of piezoelectric elements

In this way, a sound can be created by applying a voltage that changes in AC voltage or pulse voltage to the piezoelectric buzzer. Here, the method outputs a pulse wave using the PPG timer that is built into the microcontroller. PPG is an initialize for Programmable Pulse Generator, and as the name implies, pulse outputs of various widths are obtained from the microcontroller by using programs. Basically, pulse outputs using the PPG timer are enabled by setting the cycle, H width, and operations clock. In reality, in addition to this pulse information, the PPG pin output enable settings and PPG operations enable settings are also required.

4.1.3 LED displays using temperature sensor operations

This section explains how to display temperature information on the LED using the temperature sensor, which is mounted to the starter kit. A temperature sensor is a sensor for detecting changes in temperature. Put simply, it is a thermometer for measuring the temperature. Although there are various methods of measuring the temperature, the temperature sensor mounted to the starter kit is called a thermistor. A thermistor is a resistor that uses the temperature characteristics of semiconductors, and is a temperature sensor in which the resistance value changes according to the temperature

The circuit surrounding the temperature sensor on the starter kit is shown in "Figure 4-10 peripheral circuit diagram for temperature sensor". As explained in the section on the volume switch, with this circuit also, if the resistance value of the temperature sensor changes, the input voltage of the A/D converter in the microcontroller changes.

Figure 4-10 peripheral circuit diagram for temperature sensor

Next, about the LED display, is basically the same as turning ON/OFF the LED. Here, The LED is turned ON in multiple patterns according to the digital values acquired from the temperature sensor.

FUJITSU

4.2 Understanding and running the program in single-unit operation

This section explains sample programs as programs that practically turn on/of the LED using switch operations and that control the buzzer using the A/D converter operations.

The flowcharts for the sample programs are shown in "Figure 4-11 Single-unit operation flowcharts". First, the ports, interrupt levels, external interrupts, and A/D converter are initialized. Thereafter, the program enters a loop. Here, when SW2 is pressed, an external interrupt is created, and the LED on/of processing is performed. Further, when SW3 is pressed, the buzzer is output. Here, the buzzer sound can be changed by operating the Volume SW.

So, let us look at an actual program.

Check the following folder for the sample program. The folder contains several files. First, open "main.c".

¥bitpot_yellow_SampleProgram_single-chip¥single_operation¥source

Check around the line 37 as shown in "Figure 4-12 Operation mode settings (when using volume switch)" to select the operation mode. #define is set, so that whether to use the temperature sensor, and the enable/disable settings can be configured. To use the Volume SW for inputs to the A/D converter, configure the settings as shown in Figure 4-14, and to use the temperature sensor, configure the settings as shown in Figure 4-15.

In this explanation, the temperature sensor is not used, but use of the volume switch is enabled.

/* Temperature sensor use (1), or unused (0)	*/	
#define TEMP_SENSOR_USE	(0)	←Temperature sensor not used
/* Temperature measurement permission, non-permi	ission	*/
#define TEMP_MEASURE_ON	(0)	←Temperature sensor disabled
#define TEMP_MEASURE_OFF	(1)	←Volume SW enabled

Figure 4-12 Operation mode settings (when using volume switch)

/* Temperature sensor use (1), or unused (0)	*/	
#define TEMP_SENSOR_USE	(1)	←Temperature sensor used
/* Temperature measurement permission, non-perm	nission	ı */
#define TEMP_MEASURE_ON	(1)	←Temperature sensor enabled
#define TEMP_MEASURE_OFF	(0)	← Volume switch disabled

Figure 4-13 Operation mode settings (when using the temperature sensor)

Note: The operation mode settings must be configured not only for main.c, but also for ADC.c and ext_int.c.

As shown in "Figure 4-14 Main function program", the main functions are around line 165. "Port initialization", "A/D converter initialization", and "external interrupt initialization" are contained herein.

void ma	in()	
{		
	sysInitialize();	←Port initialization
	adInitialize();	\leftarrow AD converter initialization
	<pre>initial_external_int();</pre>	←External interrupt initialization
	set_il(3);	
	EI();	
	while(1);	←Infinite loop
}		

Figure 4-14 Main function program

Next, an interrupt is created when SW2 is pushed. The external interrupt function _interrupt void

Ext_int1_5 in ext_int.c will be called as shown in "Figure 4-15 SW2 interrupts (LED on/off processing)".Here, the LED display is turned on/off, due to the output settings for the port connected to the LED, or due to the switch being pressed several times, is shown.

```
_interrupt void Ext_int1_5(void)
{
       IO_EIC20.bit.EIR1 = 0;
       if (TEMP_MEASURE_OFF){
                                   ←When using Volume SW
               IO_DDR1.bit.P14 = 1;
               IO_DDR1.bit.P15 = 1;
               IO_DDR1.bit.P16 = 1;
                                   ←Port output setting
               SW_count++;
               if(SW_count > 3){
               SW_count = 0;
               }
               }
       else if(TEMP_MEASURE_ON){        ←Using temperature sensor
               (Omitted)
       }
}
```

Figure 4-15 SW2 interrupts (LED on/off processing)

An interrupt is also created if SW3 is pressed, and the external interrupt function __interrupt void Ext_int2_6 in ext_int.c is called as shown in "Figure 4-16 SW3 interrupts (buzzer output processing)".This is where the PPG timer output settings are made, and timer start/stop process is performed.

```
__interrupt void Ext_int2_6(void)
{
     IO_EIC30.bit.EIR0 = 0;
     IO_PC00.byte = 0x0E;     ←PPG timer output setting
     IO_PPGS.byte = ~IO_PPGS.byte;     ←PPG timer start/stop
}
```


The A/D conversion is started in the A/D converter initialization function. Thereafter, when the A/D conversion is finished, an A/D converter interrupt is created as shown in "Figure 4-17 A/D converter interrupts". Here, the A/D conversion values are acquired from the Volume SW or temperature sensor. If using the SW, the PPG timer cycle and duty changes are implemented using the A/D conversion values that have been acquired, to change the sound of the buzzer. If using the temperature is displayed according to the A/D conversion values acquired.

5 Try to use LIN communication

Communication is to send/receive information. There are, in fact, various communications formats, such as transmission by people talking, letters written in script, and electronic communications, etc. Among these, there are various plans for communications using electricity. This chapter explains communications in a standard called LIN.

5.1 What is LIN?

LIN is an acronym for Local Interconnect Network, and is a type of communications protocol for vehicle-mounted LAN. The LIN consortium was proposed in 1999 with the objective of enabling a less expensive configuration than CAN, which is the most widespread control system vehicle-mounted LAN. Thereafter, after several version upgrades, LIN2.0, which has added diagnostic and other functions, was launched in 2003. Further, in 2006, the version was upgraded to LIN2.1.

This section explains LIN applications. Concomitant with multi-function vehicles, the existence of a network in vehicles also became indispensable. Currently, vehicle-mounted LANs are broadly divided into two classifications: control systems, which are concerned with motoring and the vehicle body, and information systems, which connect devices such as the satellite navigation system and audio, and so different LANs are used depending on the application. In particular, vehicle body devices such as electric mirrors and power windows, which are classified as body systems, do not require such fast or detailed control. Consequently, they are also inexpensive. This is where LIN is used.

FUJITSU

Figure 5-1 Example of vehicle LIN applications

The characteristics of LIN used in the way described above, are collated and introduced in the following five points.

1. Single master communication

LIN has two types of communication nodes. One is the "master" (sender). This controls the start of all communications. The other is the slave (recipient). The slave responds to commands sent by the master. LIN communication must start from the master, and cannot be started by a slave. Further, the LIN communication mode designated as the master is pre-determined. This format is called a "single master format".

2. A maximum of 15 slave nodes can be connected using bus wiring.

The LIN network configuration (topology) is a bus. With single master LINs, the slaves communicate only when they receive commands from the master, so there is no conflict of signals in the bus. A maximum of 15 slave nodes can be connected to one master.

receiving data)

Figure 5-2 Main LIN network configuration

3. Wiring is completed using a single wire

The on-board ECUs are connected to the LIN network via transceiver ICs (electronic components that send and receive data), and each ECU is connected on the bus from the master

to a slave. An ordinary single metal wire is used as the bus cable. CAN combines two opposing metal wires to make one twisted pair cable. FlexRay uses two twisted pair cables. Consequently, LIN has the advantage of using a single cable for numerous network wires, unlike CAN and FlexRay, which use twisted pair cables.

The communications distance is 40m max. LIN can be used in combination with CAN, and in such cases, CAN is most frequently used as the core network, and LIN is used as the branch network.

4. The baud rate is 20kbps max.

The baud rate according to LIN specifications is within the range 1 to 20kbps. Practically, the baud rate of LINs used as LANs depends on the individual vehicle manufacturer's system specifications, but generally one of the following is used: 2,400kbps, 9,600kbps, or 19,200kbps.

5. Communications errors are detected only, and subsequent processing depends on the application

With LIN, communications errors are detected based on information as to whether transmitting and receiving has been performed successfully. Processing after an error has been detected, however, is not specified. Here, LIN error processing can be customized according to the application. CAN and FlexRay management of the communications status depends on the counter value, which is called the error counter, is featured by the specifications, but in LIN, if an error occurs, simple error processing is possible, in which LIN merely waits for the next command.

5.2 LIN specifications

This section explains briefly the LIN specifications.

For detailed specifications, access the LIN consortium website (<u>http://www.lin-subbus.org</u>/), and register your name and e-mail address to get a specifications.

5.2.1 Lin frame configuration

This section explains frames, which is the basic unit of LIN communication.

LIN frames are configured using "headers" and "responses". As shown in "Figure 5-3 LIN communication flow", the basic communications flow is a procedure in which the master sends headers to the slaves, and the slaves implement processing according to the contents of the headers received, and then send a response to the master.

FUJITSU

Figure 5-3 LIN communication flow

Further, headers are configured using three fields: Break, Sync byte, and ID field (Identifier), and responses are configured using two fields: Data field and Checksum field.

Figure 5-4 LIN frame configuration

1. Break

Break, which are in the header fields, are variable-length fields that indicate the start of a new frame. They comprise 13 to 16 "0" bits (fixed value zero) min. The general frame length is 13 bits.

2. Sync Byte

Sync byte, which follow on from breaks, are 10-bit fixed-length fields that synchronize the master and the slaves. Sync byte configurations comprise 1 starter bit ("0"), 8 data bits, and 1 stop bit ("1"). The 8-bit data bit has the fixed value "0x55" (which is expressed as "0x01010101" in binary). If the slave receives the 0x55 in the synch byte send by the master normally, the master and slave are synchronized.

3. ID field

The "ID field", which is the final header field and comes after the synchronous byte, is a 10-bit fixed-length field that specifies the frame type and objective. ID fields have values from "0" to "63" (6 bits). This ID field is also used by the master to specify individual slaves. Slaves judge what type of frame has been sent and if it was intended for them according to the ID field sent by the master, and send responses to the master accordingly. Further, the ID field has a 2-bit parity bit following the "0" to "63" (6 bits). This is bracketed by a 1-bit starter bit and 1-bit stop bit in the same way as the synchronous byte, so overall the field is 10 bits in length.

4. Data field

The "data", which is in the response header, is a variable-length field that literally transfers data. The data in the number of bytes that has been predetermined (1 to 8 bytes) is sent. As there is a 1-bit start bit and 1-bit stop bit bracketing the 1-byte data in the same way as the header synchronous byte, 1 byte of data is configured from 10 bits. Consequently, the total data field length is "number of bytes x 10 bites".

5. Checksum field

The "checksum", which follows the data, is a 10-bit fixed-length field for checking data. The data recipient checks whether there is an error in the data by comparing the data received with the checksum. The checksum field length is also 10 bits: a start bit and a stop bit added to the 8-bit checksum in the same way as the synchronous byte.

5.3 LIN communication flow

In general LIN communication, one master communicates with numerous slaves. LINs, which adopt a bus topology, connect the master and all the slaves using a single wire, so header electrical signals sent by the master are transmitted by the wire to all the slaves. The slaves check the frame ID, and if the header is addressed to them, sent a response to the master according to the content received. If the header received is addressed to another slave, it is ignored. In this way, 1-to-1 communication between the master and each slave is achieved.

This section explains the actual trading of communications. Currently, functions are allocated to each of the slaves from 1 to 15. The master first communicates with slave 1 and turns the motor ((1) in Figure 5-5 Main LIN network configuration and Figure 5-6 Example of communication sequence between the master and slaves during normal communication), and next acquires sensor information by communicating with slave 3. ((2) in "Figure 5-5 Main LIN network configuration" and Figure 5-6 Example of communication sequence between the master and slaves during normal communication.) Thereafter, the motor is turned by communications with slave 2 ((3) in Figure 5-5 Main LIN network configuration and Figure 5 6 Communications sequence between master and slave during normal communications). The master acquires sensor information from slave 3 again ((4) in Figure 5-5 Main LIN network configuration and Figure 5 6 Communications sequence between master and slave during normal communications), and finally turns ON the lamp by communicating with slave 15 ((5) in Figure 5-5 Main LIN network configuration and Figure 5 6 Communications sequence between master and slave during normal communications). In this chain of communications, communications between the master and slaves 2 and 3 are contiguous, and the master processes the motor turning by communicating with slave 2 using sensor information acquired by communicating with slave 3 first. In this way, during actual communications the master and multiple slaves repeatedly communicate on a 1-to-1 basis.

FUJITSU

Figure 5-5 Main LIN network configuration

Figure 5-6 Example of communication sequence between the master and slaves during normal communication

5.4 Communication between master and slave if an error occurs

LIN error processing is not determined by the protocols, and so depends on the application. Consequently, during design, it is necessary to consider the error detection methods and the process after the error has been processed. As this is not determined by the protocols in the LIN specifications either, however, examples of system design if an error occurs are introduced in the chapter "Status Management". In the examples introduced, errors are managed by slaves reporting their own status to the master. This mechanism is described below.

The basic master operation is merely to send the header to the next slave when communications with the current slave have ended. On the other hand, the slave operation is to perform error checking when a header is received and when a response is sent. Checksums and other checks are implemented during reception. When sending, checks are performed by comparing the sent data and the bus data that performs the monitoring. In this way, the slave identifies its own status, and inserts the results into the response that is sent to the master. The master identifies the slave status from the response, and if there is a nonconformance, initializes the slave. In this way, the error status is completely cleared.

5.5 LIN communication by using microcontroller

This section explains practical LIN communication using microcontrollers.

In the starter kit, the microcontroller and LIN transceiver IC (TJA1020T) are connected as shown in "Figure 5-7 LIN circuit".In the microcontroller, SOT sends, SIN receives, and SCK is the port that controls the transceiver IC. Sending and receiving signals flow on the bus via the LIN transceiver IC.

Figure 5-7 LIN circuit

FUJITSU

The registers used for entire LIN communication control on the microcontroller are as described in "Figure 5-8 Entire LIN communication control registers". Registers named "res" cannot be used as they are reserved bits.

The description of each register, and the setting values in the sample programs, are described in "Table 5-1 Description of the entire LIN communication control registers and setting values". For more information of the registers, refer to the microcontroller hardware manual.

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SCR	PEN	Р	SBL	CL	AD	CRE	RXE	TXE
LIN-UART s	erial mode	register						
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SMR	MD1	MD0	ОТО	EXT	REST	UPCL	SCKE	SOE
LIN-UART s	erial status	register						
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SSR	PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE
LIN-UART d	ata receivi	ng register	/ data send	register				
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
RDR/TDR								
LIN-UART e	xpanded st	tatus contro	ol register					
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
ESCR	LBIE	LBD	LBL1	LBL0	SOPE	SIOP	CCO	SCES
LIN-UART expanded communications control register								
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
ECCR	res	LBR	MS	SCDE	SSM	res	RBI	TBI
LIN-UART baud rate generator register 1								
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
BGR1	-							
LIN-UART baud rate generator register 0								
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
BGR0								

LIN-UART serial control register

Figure 5-8 Entire LIN communication control registers

AN07-00200-03E

Register name	Set value (contents)	Explanation	
SCR_PEN	0 (no parity)	Parity authorization bit	
SCR_P	0 (even parity)	Parity selection bit	
SCR_SBL	0 (1 bit)	Stop bit length selection bit	
SCR_CL	1 (8 bit)	Data length selection bit	
SCR_AD	0 (data frame)	Address / data format selection bit	
SCR_CRE	1 (clear flag)	Clear reception error flag bit	
SCR_RXE	0 (Receive prohibited)	Receive prohibition enable bit	
SCR_TXE	1 (Transmit enabled)	Transmit enable bit	
SMR_MD1	1 (mode 3)	Operation mode selection hit	
SMR_MD0	1 (asynchronous LIN mode)	Operation mode selection on	
SMR_OTO	0 (use external clock)	1-to-1 external input enable bit	
SMR_EXT	0 (use baud rate generator)	External serial clock source selection bit	
SMR_REST	0	Reload counter restart bit	
SMD LIDCI	1 (LIN-UART reset)	Programmable clear bit	
SMR_UPCL		(LIN-UART software reset)	
SMR_SCKE	0 (general I/O port or LIN-UART clock input pin)	Serial clock output enable bit	
SMR_SOE	1 (LIN-UART serial data output pin)	Serial data output enable bit	
SSR_BDS	0 (LSB first (transfer from least significant bit))	Transfer direction selection bit	
SSR_RIE	1 (Receive interrupt enable)	Receive interrupt request enable	
SSR_TIE	0 (Transmit interrupt prohibited)	Transmit interrupt request enable	
	0 (LIN synch break detection interrupt	LIN synch break detection interrupt enable	
ESCK_LBIE	prohibited)	bit	
ESCR_LBD	0 (LIN synch break detection flag clear)	LIN synch break detection flag bit	
ESCR_LBL1	0	I IN symph brock longth selection hit	
ESCR_LBL0	0 (13 bits)	Lin synch break length selection bit	
ESCR_SOPE	0 (serial output pin access prohibited)	Serial output pin direct access enable bit	
ESCR_SIOP	0	Serial I/O pin direct access enable bit	
ESCR_CC0	0	Continuous clock output enable bit	
ESCR_SCES	0	Sampling clock edge selection bit	

Table 5-1 Description of the entire LIN communication control registers and setting values

ECCR_LBR	0 (LIN synch break not created)	LIN synch break creation bit
ECCR_MS	0	Serial clock send/receive selection bit
ECCR_SCDE	0	Serial clock delay enable bit
ECCR_SSM	0	Start / stop bit mode enable bit
BGR_BGR1	0x16 (when set to 9600bps)	Baud rate generator 1
BGR_BGR0	0x66 (when set to 9600bps)	Baud rate generator 0

5.6 Understanding and overview of the program for LIN communication

This section explains sample programs as programs that actually perform LIN communication. In bits pot LIN communication, the starter kit operates as a LIN slave, and bits pot white operates as the master.

5.6.1 LIN communication configuration

The LIN communication conditions for the sample program are described in "Table 5-2 LIN communication conditions".

Condition	Setting value
Baud rate	2400 / 9600 (default value) / 19200bps
Peripheral clock frequency	16MHz
Synch break length	13 bits (Receive is fixed to detect 11-bits)
Data length	8 bits
Data bit format	LSB first
Data byte count	8 bytes

Table 5-2 LIN communication conditions of the sample program

Next, this section explains message IDs using LIN communication as described in "Table 5-3 LIN message IDs in the sample program".

ID	Description	Communication		
Ш	Description	direction		
0x00	Temperature measurement command / temperature display command	white \rightarrow yellow		
001	Tomposition concorrinformation	white \rightarrow yellow		
0x01	remperature sensor information	white \leftarrow yellow		
0x02	Buzzer output command / volume value measurement command	white \rightarrow yellow		
0::02	Volume (VD) information	white \rightarrow yellow		
0x05	Volume (VR) information	white \leftarrow yellow		
0x04	LED ON change command: count up / count down	white \rightarrow yellow		
005	LED solve	white \rightarrow yellow		
0x05		white \leftarrow yellow		

Table 5-3 LIN message IDs in the sample program

The details of each ID are explained below.

1. ID: 0x00

byte 0	Temperature measurement	
	command	
h-4- 1	1	A/D value (temperature
Uyte	1	sensor information)
byte	2	Reserved
byte	3	Reserved
byte	4	Reserved
byte	5	Reserved
byte	6	Reserved
byte	7	Reserved

Field name	Setting value	Remarks
		If bits pot white SW4 is set to the right, temperature
Temperature measurement	0x55: Start; 0x0F: Stop	information is acquired from the temperature sensor on
command		the starter kit by receiving 0x55. If bits pot white SW4
		is set to the left, no operation is performed.
		This is temperature sensor information from the bits pot
A/D value (temperature	0 to 255	white.
sensor information)		The temperature is displayed on the starter kit using
		this A/D value.

byte	0	Reserved	
byte	1	Reserved	
huto 2		A/D value (temperature	
Uyte	4	sensor information)	
byte	3	Reserved	
byte	4	Reserved	
byte	5	Reserved	
byte	6	Reserved	
byte	7	Reserved	

Field name	Set value	Remarks
A /D ushua	This is the starter kit response to the ID 0x00	
	0 to 255	temperature measurement command. Temperature
(Temperature sensor		sensor information is sent as A/D values, and displayed
information)		on the bits pot white 7SEG LED.

buto	0	Volume value acquire		
byte		command		
byte	1	A/D value (VR information)		
byte	2	Reserved		
byte	3	Reserved		
byte	4	Reserved		
byte	5	Reserved		
byte	6	Reserved		
byte	7	Reserved		

Field name	Set value	Remarks	
Volume value acquire command	0x55: Start; 0x0F: Stop	If bits pot white SW4 is set to the right, volume information is acquired from the starter kit by receiving 0x55, and the buzzer sound is output. If bits pot white SW4 is set to the left, the buzzer sound is not output.	
A/D value (VR information)	0 to 255	This is the bits pot white volume information. The starter kit outputs the buzzer sound according to the A/D value received.	

4. ID: 0x03

byte	0	Reserved
byte	1	Reserved
byte	2	A/D value (VR information)
byte	3	Reserved
byte	4	Reserved
byte	5	Reserved
byte	6	Reserved
byte	7	Reserved

Field name	Setting value	Remarks
A/D volue (VD	0 to 255	This is the response to the ID 0x02 volume value
A/D value (VK		measurement command. The volume information is
mormation)		sent as A/D values.

byte	0	LED on/off change command
byte	1	Reserved
byte	2	Reserved
byte	3	LED value
byte	4	Reserved
byte	5	Reserved
byte	6	Reserved
byte	7	Reserved

Field name Setting value		Remarks	
	0x55: Start; 0x0F: Stop	This is the LED on/off change command from bits pot	
LED on/off change		white. If bits pot white SW4 is set to the left, 0x55 is	
command		received, and if the LED value is not 0xFF, the received	
		LED value is displayed on the starter kit LED.	
	0 to 7 (otherwise 0xFF)	This is the value of the LED displayed on bits pot white.	
LED value		when 0xFF is received, the data is invalid.	

byte	0	Reserved
byte	1	Reserved
byte	2	Reserved
byte	3	LED value
byte	4	Reserved
byte	5	Reserved
byte	6	Reserved
byte	7	Reserved

Field name	Set value	Remarks
LED value	0 to 7	This is the value of the LED displayed on the starter kit.

5.6.2 Sample programs sequence

The LIN communication flowcharts for the sample programs are shown in "Figure 5-9 LIN communication flowchart (main routine)" and "Figure 5-10 LIN communication flowchart (interrupt routine: UART reception interrupts)".First, initialize the microcontroller, LIN-UART, and timer. Next, implement LIN bus connection processing as a LIN slave. Thereafter, the program enters a loop. Within the loop, monitor whether the data being sent and received can be completed in a fixed cycle, and when the data has finished being received, implement processing according to the ID. Synch break detection, ID reception, and data sending and receiving to operate as a LIN slave is processed using LIN-UART reception interrupts. Further, the baud rate is adjusted within the input capture interrupts as described in "Figure 5-11 LIN communication flowchart (interrupt routine: input capture interrupts)".

Figure 5-9 LIN communication flowchart (main routine)

Figure 5-10 LIN communication flowchart (interrupt routine: UART reception interrupts)

Figure 5-11 LIN communication flowchart (interrupt routine: input capture interrupts)

The next section explains the sample programs, but the sample programs contain parts in which LIN communication with bits pot white are not used. To make these parts expandable, programs commensurate with LIN use are included. Not all operations, however, are checked. Be careful when using.

The operations points of the sample program in the LIN protocol during LIN communication are shown below. The sample software operates as a LIN slave through multiple interrupt processes, as shown in "

Figure 5-12 Operations points of interrupt processes". Look at the processing of the sample software in the LIN frame fields.

Figure 5-12 Operations points of interrupt processes

① Sync break

In sync breaks, the sync break signals (13 to16-bit Low signals) are received from bits pot white (the master), and when the bus reaches "0" in the 11-bit time or greater, a sync break interrupt is created. When a sync break interrupt is detected, the sync break interrupt prohibition settings and input capture interrupts are authorized, and the system migrates to waiting for the synch field to start.

FUjitsu

```
__interrupt void
              _LinUartRx(void)
{
                                                ←Error check
        if ((ssr & 0xE0) != 0) {
        (Omitted)
        } else if (ESCR_LBD == SET) {
                                                \leftarrowSynch break detection
                                                ←Clear synch break detection flag
        ESCR\_LBD = CLEAR;
        (Omitted)
                                                           \leftarrowComplex timer (FRT)
        vSetLinFreerunTimersCompare(hTHEADER_MAX_IND);
                                                             value set
        Wait synch field start
        (Omitted)
        T00CR1_IE = SET;
                               ←Input capture interrupt enabled
}
```

Figure 5-13 Synch break interrupt control

2 Sync Byte

LIN slaves measure the baud rate using input capture in the sync Byte and perform compensation after a synch break has been detected. In the sample software, 8/16-bit complex timers are used as the input capture, and are set to both edges and free run mode. In free run mode, when an edge is detected, the counter value is sent to the data register, and the interrupt flag changes to "1", so the counter is not cleared, and the count operations continue as is.

When the input capture interrupts are set to enabled and both edge detection, when an edge is detected, an input capture interrupt is created. The timer value at both edges and the number of overflows are measured, and the baud rate calculated and adjusted using interrupts at 8.

FUJITSU

Figure 5-14 Input capture operation in the synch field


```
__interrupt void __LinICU (void)
{
 (Omitted)
 if (T00CR1_IR == SET) {
                                   ← Check edge detection interrupt
           (Omitted)
           if (ucLinStatus == LIN_WAIT_SYNCH_FIELD_START){
                                                                    ←Synch field start wait
                    uiICUTime1 = T00DR;
                                               ← Acquire timer value
                    (Omitted)
                                                                       ← State transition:
                    ucLinStatus = LIN_WAIT_SYNCH_FIELD_END;
                                                                       synch field end wait
           else if(ucLinStatus == LIN_WAIT_SYNCH_FIELD_END){
                    (Omitted)
                                               ← Acquire timer value
                    uiICUTime2=T00DR;
                    /* adjust Baud Rate */
                                                          ←Baud rate adjustment processing
                    (Omitted)
                                                          ←LIN-UART interrupt authorized
                    vEnableLinUartReception();
                    ucLinStatus = LIN_ID_RECEPTION;
                                                        ← State transition: ID received
           }
           (Omitted)
                                  \leftarrow Check whether there is an overflow interrupt
  }else if(T00CR1_IF == SET){
                                  ← Acquire number of overflows
           (Omitted)
  }
}
```

Figure 5-15 Input capture (ICU) interrupt controls

③ ID field

ID reception processing is performed in the LIN-UART interrupt function _LinUART(void).When an interrupt is created, if no error is created and the cause of the interrupt isn't a synch break interrupt, reception processing is performed.

```
__interrupt void _LinUART (void)
{
    (Omitted)
    if ((ssr & 0xE0) != 0) {
        (Omitted)
    } else if (ESCR_LBD == SET) {
        (Omitted)
    }else{
        l_ifc_rx(data);
    }
}
```

Figure 5-16 LIN-UART receive interrupt control

Processing is divided into ID reception, data sending, data reception, and wakeup sending according the status in the reception judgment processing function l_ifc_rx(l_ifc_handle rx_data) as shown in "Figure 5-17 Receive determination processing".In normal sequences, to migrate the status during the second input capture interrupt process to ID FIELD reception waiting, ID reception processing is performed. In ID reception processing, the ID that has been acquired is judged to be either a send ID or reception ID and parity check performed, and if it is a send ID, the status is migrated to send preparation status, and the data to be sent is copied to the buffer. If the ID is a reception ID, the status is migrated to data reception wait status, and a response (data) is received from the master.


```
void
         l_ifc_rx(l_ifc_handle rx_data){
   switch(ucLinStatus){
                                             ←DATA FIELD send status
   case LIN TRANSMIT:
           (Omitted)
                                             ←DATA FIELD receive status
   case LIN_DATA_RECEPTION:
           (Omitted)
                                             ←ID FIELD reception wait status
   case LIN_ID_RECEPTION:
         ucCurrentId.byte = rx_data;
                                                  ←Store received ID
         if( ucCurrentId.fields.parity != ucRightParity[ucCurrentId.fields.id] ) {
                                                                              ←Parity check
                                                  ←Error processing
           (Omitted)
         else if( LinRxDataPtr[ucCurrentId.fields.id] != 0 ) {
                                                                   ← If ID received
             ucLinStatus = LIN_DATA_RECEPTION;
                                                            ← State transition: DATA reception
             (Omitted)
                                                              wait status
             vSetLinFreerunTimersCompare(ucRxCount);
                                                            \leftarrow 8/16bit complex timer set
         } else if ( LinTxDataPtr[ucCurrentId.fields.id] != 0 ) {
             ucLinStatus = LIN_PRETRANSMIT;
           (Omitted)
                                                            \downarrow Copy send data to buffer
            vLinWordCopy(ucUartTxBuffer, LinTxDataPtr[ucCurrentId.fields.id], ucTxCount);
                                                                           ←8/16bitcomplex
             vSetLinFreerunTimersCompare(hTINFRAME_SPACE_IND);
         }
                                                                           timer set
           (Omitted)
                                             ←WAKEUP send status
   case LIN_WAKEUP_TRANSMIT:
           (Omitted)
   }
}
```

Figure 5-17 Receive determination processing

(d) DATA field

This section explains data sending and reception processing in the data field.

First, regarding data sending, if the ID received in the ID field is for a send ID, the vTimeoutCheckTask function is called by the 8/16-bit complex timer (free run timer) interrupt, as shown in "Figure 5-18 Timeout detection processing". This function is called when the timeout value set using the free run timer is detected, and in this case, is called the detection of the timeout values from the header reception to the response sending (response space). In the vTimeoutCheckTask function, processing is separated into pre-sending and initialization processing, etc., according to the status information, and if the status is pre-sending, the first data byte is sent.

```
void
         vTimeoutCheckTask(void){
    (Omitted)
    if ( uiIntDemandCounter == 0 ) {
        switch ( ucLinStatus ) {
                                               ← Status before sending
        case
                  LIN PRETRANSMIT:
                                               ← State transition: DATA FIELD send
             ucLinStatus = LIN_TRANSMIT;
                                               status
             ucSaveData = ucUartTxBuffer[0];
                                               ← Acquiring 1-byte send data
             l_ifc_tx(ucUartTxBuffer[0]);
                                               ←Data transmit processing
             (Omitted)
        case
                  LIN_UART_INITIAL:
                 (Omitted)
                  LIN_ID_RECEPTION:
        case
                 (Omitted)
                  LIN_DATA_RECEPTION:
        case
                  (Omitted)
                  LIN_TRANSMIT:
        case
                  (Omitted)
                  LIN_WAIT_SYNCH_FIELD_START:
        case
                  (Omitted)
   }
}
```

Figure 5-18 Timeout detection processing

When sending the first data byte, a reception interrupt is created by receiving the self-sent data. Whereupon, the reception judgment processing function _ifc_rx(l_ifc_handle rx_data) is called in the same way as for ID field operations, and the data is sent from the second byte onwards according to the data field send status as shown in "Figure 5-19 Data send processing", and the same process is repeated. In these LIN communication, the number of data bytes is set to 8, so when the eighth data byte has finished being sent, finally a checksum is sent, and the send processing ends.

void	l_ifc_rx(l_ifc_handle rx_data){						
switch(ucLinStatus){							
cas	e LIN_TRANSMIT: ←DATA FIELD send s	LIN_TRANSMIT: ←DATA FIELD send status					
	if (ucTxCurrentIndex < ucTxCount){	←If any send data is remaining					
	(Omitted)						
	l_ifc_tx(ucUartTxBuffer[ucTxCurrentIndex]);	←Send processing					
	(Omitted)						
	<pre>} else if (ucTxCurrentIndex == ucTxCount){</pre>	←If send data has all been sent					
	(Omitted)						
	l_ifc_tx(((unsigned char)~uiTxCheckSum));	←Check sum send processing					
	(Omitted)	(Omitted)					
	}						
cas	e LIN_DATA_RECEPTION:	LIN_DATA_RECEPTION:					
	(Omitted)						
cas	LIN_ID_RECEPTION:						
	(Omitted)						
cas	LIN_WAKEUP_TRANSMIT:						
	(Omitted)						
}							
}							

Figure 5-19 Data send processing

The next section explains data reception processing.

If the ID acquired using ID reception processing is for reception, the status is migrated to data reception status, and data reception from bits pot white awaited. When a data reception interrupt is created by bits pot white sending data, reception is processed in the reception processing function l_ifc_rx(l_ifc_handle rx_data as shown in "Figure 5-20 Data reception processing".When data is received as well, reception is processed using l_ifc_rx(data) each time one byte of data is received in the same way as for the second byte onwards for data that has been sent, and when all eight bytes of data have been received, if there is no checksum error, the reception successful flag is set, and reception processing ends.

void	l_ifc_rx(l_ifc_handle rx_data){	
swite	h(ucLinStatus){	
case	LIN_TRANSMIT:	
	(Omitted)	
case	LIN_DATA_RECEPTION: ←DATA	FIELD reception status
	if (ucRxCurrentIndex >= ucRxCount) { \leftarrow If	all data has been received
	if ((uiRxCheckSum + rx_data) == 0xFF) {	←If Checksum calculations are normal
	(Omitted)	
	flagsLinTxRx.bit.SucceedReception = S	SET; ←Reception successful flag set
	memcpy(&ucUartRxFixedBuffer[0], &	cucUartRxBuffer[0], ucRxCount);
	(Omitted)	↑ Copy received data
	} else {	$\leftarrow If there is a check sum error$
	l_flg_tst(hCHECKSUM_ERR);	←Error processing
	} else { ←If there is	s still remaining reception data
	ucUartRxBuffer[ucRxCurrentIndex] = rx_da	ta; ←Received data stored to buffer
	(Omitted)	
case	LIN_ID_RECEPTION:	
	(Omitted)	
case	LIN_WAKEUP_TRANSMIT:	
	(Omitted)	
}		
}		

Figure 5-20 Data reception processing

Finally, about the processes according to the ID received, there is a vBaseTimeTask function around the 100th line of the main routine. This function is called periodically at set cycles, and mainly checks whether or not sending and receiving has finished. If this function is called when all data has finished being sent (i.e., when flagsLinTxRx.bit.SucceedReception has been set), the submain function is called as the reception completion processing as shown in "Figure 5-21 Submain processing", and temperature measurement processing, buzzer output processing, LED ON processing, and sent data storage are performed.

void	sub	omain(v	oid)		
{					
	switch (u	ch (ucCurrentId.fields.id){			
	case	0x00	€	-ID: 0x0	0
		if (ucI	$DATA00[0] == 0x55){$		
		I	$O_ADC2.byte = 0xCB;$		
		I	$O_ADC1.byte = 0x71;$	←Start	AD interrupt
		if	$f(ad_master < 42)$	(obta	in temperature information)
			IO_PDR1.byte = LED_pat2	2[1];	←Temperature information LED display
			(Omitted)		
	case	0x02			
			IO_ADC2.byte = $0xCB$;		
			IO_ADC1.byte = $0x11$;	← Start	AD interrupt (obtain VR information)
			IO_PC00.byte = $0x0E;$		
			(Omitted)	←Buzz	er output
	case	0x04			
			if $((ucDATA04[0] == 0x55))$)&&(ucD	ATA04[3] != 0xFF)){
			(Omitted)	← Rece	ived LED value ON processing
			else if (LED_count_Flag ==	= 1){	\leftarrow If switch 2 is pressed
			(Omitted)		
			$ucDATA05[3] = LED_{-}$	_count1;	←LED value stored after count increases
			else if (LED_count_Flag ==	= 2){	←If switch 3 is pressed
			(Omitted)		
			$ucDATA05[3] = LED_{-}$	_count1;	←LED value stored after count decreases
	defau	ılt:			
			break;		

Figure 5-21 Submain processing

6 Appendix

6.1 Sample program folder/file configuration

The folder/file configuration of the sample program is shown in "Table 6-1 Sample program folder/file configuration".

			-	-		
	File/folder name		Provision	of the file	Explanation	
				Monitor	Explanation	
bits	_pot_	_yellow_SampleProgram / bits_pot_yel / bits_pot_	low_Samplep yellow_Samp	rogram_sing leprogram_n	lechip nonitordebugger	
bitspot_yellow_SampleProgram.wsp			Yes	No	Softune workspace file	
S	single	echip_operation			Folder for Single-unit operation	
Debug						
		ABS				
		single_operarion.abs	Yes	Yes	Sample program abs file	
		single_operarion.mhx	Yes	Yes	Sample program HEX file	
		LST				
		OBJ				
		OPT	-	-		
		emu_dbg.sup	No	Yes	Emulator debugger file	
		mon_dbg.sup	No	Yes	Monitor debugger file	
	ine	clude	-	-		
		_f2mc8fx.h	Yes	Yes	Microcontroller header definition file	
		define.h	Yes	Yes	Header definition file	
		extern.h	Yes	Yes	External function reference file	
		fgm.h	Yes	Yes	Header file for incorporated monitor	
					programs	
		mb95130.h	Yes	Yes	Microcontroller header file	
	SO	source				
		fgm_cfg.asm	Yes	Yes	Monitor operation definition file	
		startup.asm	Yes	Yes	Microcontroller startup assembler file	
		ADC.c	Yes	Yes	A/D converter file	
		autoboot.c	Yes	Yes	Autoboot determination processing file	
		ext_int.c	Yes	Yes	External interrupt processing function	
		init.c	Yes	Yes	Internal clock initialization file	
		main.c	Yes	Yes	Main source file	
		vector.c	Yes	Yes	Vector table source file	
		fgm_cfg.h	Yes	Yes	Monitor operation definition file	
		FGM.rel	Yes	Yes	Monitor program	
	sa	mple.dat	Yes	Yes	Softune settings file	
	sir	igle operation.pri	Yes	Yes	Softune project file	
I	IN	V communication				
	Debug					
		ABS				
		LIN_communication.abs	Yes	Yes	Sample program abs file	
		LIN_communication.mhx	Yes	Yes	Sample program HEX file	
		LST				

Table 6-1	Sample	nrogram	folder/file	configuration
14010-1	Sample	program	101ucl/IIIc	configuration

OBI			
OPT			
emu dha sun	Ves	Ves	Emulator debugger file
mon dbg sup	Ves	Ves	Monitor debugger file
include	105	105	Wolntor debugger me
f2mc8fx.h	Yes	Yes	Microcontroller header definition file
define.h	Yes	Yes	Header definition file
define 1.h	Yes	Yes	Header file for LIN driver definition
extern.h	Yes	Yes	External function reference file
fgm.h	Yes	Yes	Header file for incorporated moni
e i			programs
lin.h	Yes	Yes	Header file for LIN drivers
linapi.h	Yes	Yes	Data communications system API co
1			header file
lindbcpu.h	Yes	Yes	CPU compatible definitions header fil
lindbmsg.h	Yes	Yes	Header file for LIN communicat
			definition
			(baud rate settings, ID settings, sin
			registration, etc.)
linhibios.h	Yes	Yes	LIN driver high level header file
linlobios.h	Yes	Yes	LIN driver low level header file
linnode.h	Yes	Yes	Header file for definitions by I
			communication node
mb95130.h	Yes	Yes	Microcontroller header file
ource			
fgm_cfg.asm	Yes	Yes	Monitor operations definition file
fgm_main.asm	Yes	Yes	Monitor debugger assembler file
startup.asm	Yes	Yes	Microcontroller startup assembler file
ADC.c	Yes	Yes	A/D converter file
autoboot.c	Yes	Yes	Autoboot determination processing fil
ext_int.c	Yes	Yes	External interrupt processing function
init.c	Yes	Yes	Internal clock initialization file
linapi.c	Yes	Yes	Data communications system A
			source file
linhibios.c	Yes	Yes	Driver high level source file
			(LIN protocol control)
linlobios.c	Yes	Yes	Driver low level source file
			(CPU resource control)
main.c	Yes	Yes	Main source file
vector.c	Yes	Yes	Vector table source file
fgm_cfg.h	Yes	Yes	Monitor operations definition file
FGM.rel	Yes	Yes	Monitor program
sg_sample.dat	Yes	Yes	Softune settings file
LIN SLAVE.pri	Yes	Yes	Softune project file